МАТЕМАТИКА

6 класс Электронное приложение

Пособие для учителей 6 классов общеобразовательных школ

Математика: Электронное приложение. Пособие для учителей 6 кл. общеобразоват. шк. / А. Е. Абылкасымова, Т. П. Кучер. — Алматы: Мектеп, 2018. — 109 с.

© Абылкасымова А. Е., Кучер Т. П., 2018

художественное оформление, 2018

Имущественные права на издание принадлежат издательству "Мектеп"

Все права защищены

ВВЕДЕНИЕ

Это электронное приложение является составной частью учебнометодического комплекса по математике для 6-х классов общеобразовательных школ. Оно предназначено в помощь учителям, работающим по учебнику издательства Мектеп "МАТЕМАТИКА. 6 класс" авторов Абылкасымовой А.Е., Кучер Т.П., Жумагуловой З.А.

Данное электронное приложение по каждой теме содержит:

- материалы для устной работы, математической разминки;
- карточки для использования приемов развития критического мышления и организации индивидуальной и групповой деятельности учащихся на уроке;
 - тесты для формативного оценивания.

Материалы для устной работы, математической разминки представляют собой задания для закрепления изученного материала, являющегося основой овладения новыми знаниями. В процессе выполнения этих заданий дети расшифруют слово, связанное с темой урока. Задания для устной работы должны использоваться в начале урока и могут демонстрироваться с помощью электронной доски или других технических средств обучения.

По каждой теме (кроме двух) для овладения новыми математическими знаниями разработано математическое содержание одного из приемов развития критического мышления, таких как "Верю — Не верю", "Согласен — Не согласен", "До — После", "Зигзаг", "Вращающаяся станция", "Снежный ком", "Пазл", "Ромашка Блума", "Фишбоун", "Инсерт". В данном электронном приложении имеются разработанные карточки для использования этих приемов, которые можно распечатать для организации индивидуальной и групповой работы учащихся. Учитель по своему усмотрению может использовать и другие приемы развития критического мышления и на других этапах овладения математическими знаниями.

Учитель имеет возможность распечатать имеющиеся в данном электронном приложении тесты для формативного оценивания. Эти тесты разработаны в соответствии с научной теорией создания тестов Аванесова В.С. и результатов диссертационного исследования автора. Автор исходил прежде всего из важности учета специфики формирования математических знаний, умений и навыков — поэтапности и опоры на изученное. Установлен объем этих работ — 5, 6, 7 заданий. Тесты хотя и небольшого объема (как правило 5—7 заданий), но охватывают весь изучаемый в параграфе материал и проводятся перед изучением последующего материала. Поскольку в соответствии с исследованиями ученых психологов, педагогов и методистов учащийся может успешно усваивать дальнейший материал, если он успешно овладел не менее 70% изученного материала, то при оценивании результатов тестирования в рамках формативного оценивания считается, что учащийся достиг нужного уровня, если он правильно выполнил 4 задания из 5 (5 заданий из 6, 5 или 6 заданий из 7).

№ п/п	Содержание	Стр.
1	Введение	3
2.	Содержание	4
3.	Материалы для устной работы, математической разминки	5
4.	Карточки для использования приемов развития критического мышления и	
	организации индивидуальной и групповой деятельности учащихся на уроке	. 21
5.	Тесты для формативного оценивания	. 81

МАТЕРИАЛЫ ДЛЯ УСТНОЙ РАБОТЫ, МАТЕМАТИЧЕСКОЙ РАЗМИНКИ

§ 1. Отношение двух чисел. Процентное отношение двух чисел

Найдите неизвестное число в верном равенстве и расшифруйте слово.

	$2 \cdot 49$	$=x\cdot 7$		2	$c \cdot 24 = 3$	12 · 8	3	$3 \cdot x = 30$			
	I	п			e			Н			
	82 :	=2x		a	$c \cdot 24 = 3$	$12 \cdot 6$	5	$x \cdot x = 15$. 28		
	:	и			Т			0			
	84	78	140	84	14	104	140	41	104		
Слово											

§ 2. Пропорция. Основное свойство пропорции

Найдите отношение чисел и расшифруйте слово.

1 и 2			3 и 4	$\frac{1}{2}$	и $\frac{3}{4}$	$\frac{1}{3}$ И	1	1 и $\frac{3}{4}$	é	3 и 2
p	p o			R		П			ц	
	1/3	<u>-</u>	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{3}$	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{2}{3}$
Слово										

§ 3. Прямо пропорциональная зависимость. Обратно пропорциональная зависимость

Найдите неизвестное число в пропорции и расшифруйте слово.

$\frac{3}{4} = \frac{6}{x}$	$\frac{1}{4} = \frac{\lambda}{8}$	- -	$=\frac{1}{2}$	$\frac{3}{x} = \frac{9}{12}$	$\frac{3}{4}$	$=\frac{15}{x}$	$\frac{1}{7} =$	$\frac{x}{21}$	$\frac{x}{5} = \frac{13}{65}$	$\frac{3}{15}$	$=\frac{x}{25}$
Т	0		M	3		И	В		a		c
	4	1	3	20	5	20	7	2	5	8	20
Слово											

§ 4. Решение задач с помощью пропорций

Найдите коэффициент прямой пропорциональности и расшифруйте слово, если ее график проходит через точку A.

	A(2; 6)	A(1; 4)	A(16; 12)	A(8; 4)	A(3; 15)	
	Ч	a	д	И	3	
_	1	1	1			_

	5	4	$\frac{3}{4}$	4	3	$\frac{1}{2}$
Слово						

§ 5. Масштаб

Найдите коэффициент обратной пропорциональности и расшифруйте слово, если ее график проходит через точку A.

A(1; 2)	A(2; 3))	A(4; 2)	A(1; 5)		A(3;	4)	A(3; 3)
ш	б			a	M		c		Т
	5	;	8	12	2	Τ	9	8	6
Слово									

§ 6. Длина окружности. Площадь круга. Шар. Сфера

Найдите реальное расстояние по расстоянию на карте с масштабом 1:100 000 и расшифруйте слово.

10 см	5 мм	1 см 5 мм	15 см	1 дм 5 мм
ф	a	p	e	c

	10 км 500 м	10 км	15 км	1 км 500 м	500 м
Слово					

§ 7. Положительные и отрицательные числа. Координатная прямая

1. Найдите площадь круга по известной длине окружности и расшифруйте слово.

$0,5\pi$	π		2π	3π		4π	5π		6π	7π	8π	10)π
О	ц		е	p		Л	И		Т	ь	Н	а	ι
	$\frac{\pi}{16}$	9π	$2\frac{\pi}{4}$	$6\frac{\pi}{4}$	$\frac{\pi}{4}$	25π	9π	π	4π	$12\frac{\pi}{4}$	16π	$\frac{\pi}{16}$	π
Слово													

§ 8. Противоположные числа. Целые числа. Рациональные числа

Найдите значение разности с помощью координатной прямой и расшифруйте слово.

ж о л п и р в е т н	3 - 6	0 - 7	-2 - 6	-6 - 0	-2 - 3	-1 - 1	-5 - 4	10 - 6	6 - 10	0 - 1
ж о л п и р в е т н	ж	0	л	п	и	p	В	e	Т	Н

	-6	-2	-7	-4	-5	-9	-7	-6	-7	-8	-7	-3	-1	-7	4
Слово															

§ 9. Модуль числа и его геометрический смысл

Найдите противоположное число и расшифруйте слово.

8 2 9 5 4		-0,5		20	-20	-0,75	$\frac{1}{2}$	$\frac{3}{4}$	
5	8	д		О	M	Ь	У	л	
		20		-20	$\frac{1}{2}$	-0,5	-0,75	$\frac{3}{4}$	
Слово									

§ 10. Сравнение рациональных чисел

1. Найдите модуль числа и расшифруйте слово.

	}	8 8	-0,5	20	0	a, где $a < 0$	-0,75	a, где $a>0$	$\frac{3}{4}$
%	ି 😭 🍃		p	e	В	И	c	a	Н
	0,75	0,5	а	0	$\frac{3}{4}$	20	$\frac{3}{4}$	-a	20
Слово									

§ 11. Сложение рациональных чисел с помощью координатной прямой

1. Найдите равное число и расшифруйте слово.

1,30	-(-10,5)	$\left -10\frac{1}{5}\right $	-(-2,3)	$\left -2\frac{3}{4}\right $	$-\frac{3}{4}$	$-(-\frac{3}{4})$	0
452	Н	0	c	e	Л	и	ж

	2,3	-0,75	$10\frac{1}{5}$	0	$2\frac{3}{4}$	10,5	0,75	$2\frac{3}{4}$
Слово								

§ 12. Сложение отрицательных рациональных чисел

1. Найдите равное число и расшифруйте слово.

130	-(-16,19)	-0,2	$-\frac{1}{4}$	$-\left(-\frac{15}{75}\right)$	-(-0,25)
4.2	п	х	e	c	у
	$\frac{1}{4}$	0,2	16,19	-0,25	$-\frac{1}{5}$
Слово					

§ 13. Сложение рациональных чисел с разными знаками

1. Найдите значение выражения и расшифруйте слово.

#+ ** X	-18 + (-8)	-(-10)	-6 + (-4)	-26	-1,5 + (-0,5)	-2
Math	3	ы	p	e	Н	a
	-10	2	-26	-2	10	26
Слово						

§ 14. Свойства сложения рациональных чисел

1. Найдите значение выражения и расшифруйте слово.

+	-18 + (-8)		-(-	-15)	-3	3 + (-7)	-40	1,5 + ((-0,5)	-2
Math	В			a		c	й	т	1	0
	-10	-2	26	2		40	-10	1	-26	15
Слово										

§ 15. Вычитание рациональных чисел

1. Найдите значение выражения и расшифруйте слово.

13 + (-8) + (-13)	-(-8)	-6 + (-4) + 6	-86 + (-57) + (-14)
ч	e	В	a
-1,5+(-0,5)+1	-4	-(-1)	-157
Т	и	н	ы

	-4	157	-8	4	-1	-157	1	4	8
Слово									

§ 16. Сложение и вычитание рациональных чисел

1. Найдите значение выражения и расшифруйте слово.

13 - (-8)	-8 - (-18)	-21 - (-22)	-87 - (-66)
Т	e	В	И
-1,5 - (-0,5)	-70 - 30	4 - 14	-76 - (-176)
c	й	д	я

	-10	10	-100	-1	21	1	-21	100
Слово								

§ 17. Расстояние между точками координатной прямой

Найдите значение выражения и расшифруйте слово.

13 - (-8)	-8 - (-18)	-21 - (-22)	-87 - (-66)
Т	e	В	И
-1,5-(-0,5)	-70 - 30	4 - 14	-76 - (-176)
c	й	д	я

	-10	10	-100	-1	21	1	-21	100
слово								

§ 18. Умножение рациональных чисел

1. Найдите значение выражения и расшифруйте слово.

	12 - (-9)	12 - 9	-12 - (-9)	-12 - 9
Math	М	у	c	a

	-3	3	21	21	-21
Слово					

§ 19. Переместительное и сочетательное свойства умножения рациональных чисел

Найдите значение выражения и расшифруйте слово.

10 · (-8)	$-25\cdot 4$	-25 · (-4)	0,8 · (-12,5)	-2,5+1,5	-1,25 · (-8)
В	a	c	й	т	O

	100	-80	10	-10	100	-1	-80	-100
Слово								

§ 20. Деление рациональных чисел

Найдите значение выражения и расшифруйте слово.

-730 · 2 · (-5)	7 · (-25) · 4	2 · (-70) · (-5)
н	e	д
-25 · (-73) · (-4)		7 · 8 · (-125)
и		л

	700	-700	-7000	-700	7300	-7300	-700
Слово							

§ 21. Арифметические действия с рациональными числами

Найдите значение выражения и расшифруйте слово.

115: (-23)	-12 060 : (-3)	-465 : (-93)	-568:71
Т	e	В	И
-18120 : (-30)	-241 600 : 400	80 400 : (-20)	-416 : (-52)
c	й	д	я

	-4020	4020	-604	604	-5	5	-8	8
Слово								

§ 22. Переменная

Найдите значение выражения и расшифруйте слово.

-84:14	$-1\frac{5}{19}\cdot(-\frac{19}{24})$	560 : (-70)	$-\frac{6}{19}$ - 6 - $\frac{13}{19}$
р	a	п	я
$-25 \cdot 0,06 \cdot (-4)$	-31 + 108 + (-69)	$16,5-17\frac{1}{2}$	
M	е	н	

	-8	8	-6	8	6	8	-1	-1	1	-7
Слово										

§ 23. Распределительное свойство умножения рациональных чисел. Раскрытие скобок

Найдите значение выражения 1500:x и расшифруйте слово, если x равно:

-30	15	-1,5	-15	-(-30)
Т	0	В	й	c

	50	-1000	100	-100	50	-50	-1000	100
Слово								

§ 24. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых

Найдите значение выражения и расшифруйте слово.

$-25 \cdot (20 + 4)$	28 - 128 - 60	-16 · (-10 - 2)		
н	e	И		
	$-6 \cdot (-15) + (-6) \cdot (-85)$	$-16 \cdot (10 + 2)$		
	3	a		

	600	-600	-192	-600	192	-160
Слово						

§ 25. Тождество. Тождественные преобразования выражений

Найдите значение выражения и расшифруйте слово. Приведите подобные слагаемые и расшифруйте слово.

$-25\cdot a+a+10$	$100 \cdot a - 132 \cdot a + 16 \cdot a$	$-16\cdot(a-2\cdot a)$	$-16 \cdot a + 2 \cdot a$	
т	e	В	ж	
$-71 \cdot a + 85 \cdot a$ $28 - 38 - 24 \cdot a$		$28 \cdot a - 128 \cdot a - 60 \cdot a$		
Д	0		c	

	-24a + 10	-24a - 10	-14a	14a	-16a	-160a	-24a + 10	16a	-24a - 10
Слово									

§ 26. Решение текстовых задач

Найдите тождественно равное выражение и расшифруйте слово.

25a - a + 10	100a - 132a + 16a	$(a-2a)\cdot (-24)-10$	-16a + 3a - 35 + 13a
В	ж	И	р
-71a + 36a	-24a + 35 + 24a	-(33a - 48a - 20a)	-40a - 10 - a + 17a
a	ы	e	Н

	24a + 10	35	-35	-35a	-16a	35a	-24a - 10	24a - 10	35a
Слово									

§ 27. Числовые равенства и их свойства

Решите уравнение и расшифруйте слово.

x:(-70)=-400	$x: (-25) = -4 \cdot 28$	$x \cdot (-700) = (-350)$	
н	e	р	
5600: x = 20	$x+658\cdot 4=-42\cdot 4$	56000: (-x) = 200	800: x = -1600
В	С	Т	a

	0,5	-0,5	280	2800	28 000	-2800	-280	280	-0,5
Слово									

§ 28. Решение уравнений

Найдите правую часть верного равенства по его левой части, если равенства a=b или c=d — верные числовые равенства, и расшифруйте слово.

$a + \kappa$	$a \cdot \kappa$	a+c
e	н	и
$a \cdot c$	c - 12	12 c
л	й	0

	$b \cdot d$	b+d	$b \cdot k$	b + k	d-12	$b \cdot k$	12d	b+k
Слово								

§ 29. Линейное уравнение с одной переменной

Найдите корень уравнения и расшифруйте слово.

$x: (-\frac{3}{4}) = -400$	$x: (-1600) = 0,75 \cdot \frac{1}{4}$	$x \cdot \frac{1}{125} = \frac{3}{25} \cdot 2$
н	e	0
900: x = -30	$x + 7997 \cdot \frac{3}{8} = -3 \cdot \frac{3}{8}$	15: (-x) = -0,005
й	л	И

	-3000	3000	300	-300	-30	300	30	-300
Слово								

§ 30. Линейное уравнение, содержащее переменную под знаком модуля

Решите уравнение и расшифруйте слово.

$x \cdot \frac{3}{8} = -\frac{3}{8}$	$x\cdot\left(-\frac{3}{4}\right)=0$	$x\cdot\left(\frac{3}{4}+0.75\right)=4\frac{1}{2}$
Н	e	Ш
$x \cdot (-\frac{1}{8} + 0.125) = 0$		$x\cdot (0,008-\frac{1}{125})=\frac{3}{7}$
и		p

	Ø	{0}	{3}	{0}	{-3}	$\{-\infty; +\infty\}$	{0}
Слово							

§ 31. Решение текстовых задач с помощью уравнений

Решите уравнение и расшифруйте слово.

$(x-2x)\cdot (-25)-10=240$	$x \cdot \frac{3}{8} = -\frac{3}{4} + 0.75$	
д	3	
115x - 132x + 17x = 0	$-\frac{1}{4}x + 0,25x = -\frac{9}{8}$	-16x + 3x - 13 = 117
и	a	Ч

	{0}	Ø	{10}	Ø	{-10}	$\{-\infty; +\infty\}$
Слово						

§ 32. Числовые неравенства и их свойства

Решите уравнение и расшифруйте слово.

x:(-70)=-400	$x: (-25) = -4 \cdot 28$	$x \cdot (-700) = (-350)$	
т	e	p	
5600: x = 20	$x+658\cdot 4=-42\cdot 4$	56000: (-x) = 200	800: x = -1600
В	a	Н	С

	-280	2800	0,5	-2800	280	2800	-280	-0,5	28 000	280	-2800
Слово											

§ 33. Числовые промежутки

Задание для устной работы

Найдите правую часть верного неравенства по его левой части и знаку неравенства, если неравенства a>b>0 или c>d>0, k>0, n<0— верные числовые неравенства, и расшифруйте слово.

$a + k > \dots$	ak >	a + c >	cn <	$rac{a}{k}>$
Т	0	p	M	И
ac >	c-12>	$c\kappa >$	$\frac{a}{d} > \dots$	$\frac{a}{n} < \dots$
к	у	п	e	ж

	dk	b+d	$b \cdot k$	dn	$\frac{b}{c}$	$\frac{b}{n}$	d-12	b + k	$b \cdot d$	$\frac{b}{k}$
Слово										

§ 34. Объединение и пересечение числовых промежутков

Найдите значение выражения и расшифруйте слово.

$\{1;\ 2\} \cup \{4;\ 5\}$	$\{1;2;3\}\cap\{4;5\}$	$\{1;4;5\}\cup\{4;5\}$	
д	e	б	
$\{1;\ 2\}\ \cup\ \varnothing$	$\{1;\ 4;\ 5\}\ \cap \{4;\ 5\}$	$\{1;2\}\ \cup \{1;5\}$	$\{1;2;3\}\ \cap \{1;5\}$
0	н	ъ	И

	{1; 2}	{1; 4; 5}	{1; 2; 5}	Ø	{1; 2; 4; 5}	{1}	{4; 5}	Ø	{4; 5}	{1}	Ø
Слово											

§ 35. Линейные неравенства с одной переменной

Решите уравнение и расшифруйте слово.

x = 5	x = -5	x = -5	x =0
p	e	В	H
$ 5-x \cdot x=0$	$x - 8 \cdot 4 = -37$	(560 - 2.8)	$\cdot \ 200) \cdot \ x = 0$
Т	a		2

	{0}	Ø	{-5; 5}	$\{-5\}$	{5}	Ø	{0}	$\{-\infty; +\infty\}$	{0; 5}	{5}	{-5}
Слово											

§ 36. Решение линейных неравенств с одной переменной

Решите неравенство и расшифруйте слово.

$-\frac{1}{3}x > -1$	$-\frac{1}{4}x\leqslant 0,25\cdot 3$	$x \cdot (-\frac{1}{125}) \geqslant \frac{3}{25} \cdot (-0,2)$
Н	e	0
30x > -90	$x+7,7\cdot\frac{3}{8}<-3\cdot\frac{3}{8}$	-0.5x<-1.5
й	л	И

	(-∞; -3)	(3; +∞)	(-∞; 3)	$[-3; +\infty)$	(-3; +∞)	(-∞; 3)	(-∞; 3]	[−3; +∞)
Слово								

§ 37. Решение систем линейных неравенств с одной переменной

Найдите равный числовой промежуток и расшифруйте слово.

$[-4,2;1,4]\cap[1,4;2,4]$	$[-4,2;-1,4]\cap[1,4;2,4]$	$[-4,2;1,4]\cup[1,4;2,4]$
Т	И	М
$[-4,2;1,4]\cup\varnothing$	$[-4,2;1,4]\cap[-1,4;2,4]$	$[-1,4; 1,4] \cup [-2,4; 2,4]$
a	c	e

	[-1,4; 1,4]	Ø	[-1,4; 1,4]	{1,4}	[-1,4; 2,4]	[-4,2; 2,4]	[-4,2; 1,4]
Слово							

§ 38. Линейное неравенство, содержащее переменную под знаком модуля

Найдите решение системы и расшифруйте слово.

$\begin{cases} x \leqslant 7, \\ x - 7 \geqslant 0 \end{cases}$	$\begin{cases} x \leqslant 7, \\ x \geqslant -7 \end{cases}$	$\begin{cases} x \ge 7, \\ x - 7 \ge 0 \end{cases}$	$\begin{cases} x < 7, \\ x - 7 > 0 \end{cases}$	$\begin{cases} x < 7, \\ x > -7 \end{cases}$	$\begin{cases} x < 7, \\ x < -7 \end{cases}$
л	e	й	Н	0	И

	{7}	$(-\infty; -7)$	Ø	[-7; 7]	[7; +∞)	Ø	(-7; 7)	[-7; 7]
Слово								

§ 39. Решение линейных неравенств, содержащих переменную под знаком модуля

Найдите решение неравенства и расшифруйте слово.

x < 9)	-x	: ≤ 9	$ x \ge$	· -9		$ x \leqslant 0$	-a	c > 9		x < -9
И			e	Л			0	й			Н
	$\{-\infty; +\infty\}$ (-9;		(-9; 9)	Ø	[-9; 9]	(-∞; -9) ∪ (9;+∞)	Ø	{0}	[-9; 9]
Слово											

§ 40. Плоскость. Перпендикулярные прямые и отрезки

Найдите решение неравенства и расшифруйте слово.

x-2 < 5	$ 2-x \leqslant 5$	$ x-2 \geqslant -5$	$ x-2 \leqslant 0$	2 - x > 5	2-x <-5	$ x-2 \geqslant 5$
Ь	О	к	л	п	С	т

	$(-\infty; -3) \cup (7; +\infty)$	{2}	[-3; 7]	Ø	(-∞; ∞)	[-3; 7]	Ø	$(-\infty; -3] \cup [7; +\infty)$	Ø
Слово									

§ 41. Параллельные прямые и отрезки

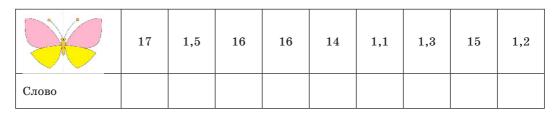
Найдите решение и расшифруйте слово.

$x^2-1=0$	x < 1	$-1 \leqslant x \leqslant 1$	x = -1	$ x \leq 0$	x+1=0	x = -1	x - 1 = 9
н	e	п	p	a	ы	Л	ь

	[-1; 1]	{0}	{1}	{0}	Ø	Ø	(-1; 1)	Ø	{10}	{-1; 1}	{-1}	(-1; 1)
Слово												

§ 42. Координатная плоскость. Прямоугольная система координат

Найдите радиус окружности по известной ее длине и расшифруйте слово.


π	$2,1\pi$	0,3 π	41 π	52 π	76 π	7 π	78 π	56 π	11 π	58 π
p	я	п	У	M	л	a	г	ь	0	Н

4	0,15	0,5	1,05	26	5,5	20,5	39	5,5	38	28	29	3,5	1,05
Слово													

§ 43. Центральная и осевая симметрии

Найдите радиус круга по известной его площади и расшифруйте слово.

256 π	$2,25 \pi$	1,21 π	289 π	196 π	1,69 π	1,44 π
М	И	Т	c	e	p	я

§ 44. Расположение фигуры в пространстве. Изображение пространственных фигур

Найдите значение выражения 12:(-x) и расшифруйте слово, если x равно:

-3	-120	-30	60	24	-24	-12	-1,2	-0,5	0,12
p	0	п	Т	c	a	Н	e	В	ы

	0,4	4	0,1	-0,5	-0,2	4	0,5	1	-0,5	-0,2	24	10	1	1	100	10
Слово																

§ 45. Понятие вектора

Выразите y через x и расшифруйте слово.

y-7x=0	0.1y-x=1.5	2x - y = 1	y+5x=0	6x + 3y = 9	5 - x + y = 0
e	к	O	В	т	p

A A B	y = -5x	y = 7x	y = 10x + 15	y = 3 - 2x	y=2x-1	y = x - 5
Слово						

§ 46. Статистические данные и их характеристики

Найдите время движения, если путь длиной 280 км пройден с указанной скоростью, и расшифруйте слово.

56 км/ч	35 км/ч	70 км/ч	14 км/ч	112 км/ч
т	a	c	и	к

	4 ч	5 ч	8 ч	5 ч	20 ч	4 ч	5 ч	20 ч	2,5 ч	8 ч
Слово										

§ 47. Решение задач на нахождение средней скорости движения. Решение комбинаторных задач методом перебора

Для ряда данных 0; 8; 9; -1; 7; 0; 5 найдите их статистические характеристики и расшифруйте слово.

Среднее ар	_	Мода	Медиана	Наибольше значение			Размах
д		я	p	Н	е	!	c
	10	5	-1	4	9	0	0
Слово							

§ 48. Способы задания зависимостей между величинами

Найдите среднюю скорость движения, если путь длиной 280 км пройден за $t_{\scriptscriptstyle 1}$ часов, путь длиной 560 км пройден за $t_{\scriptscriptstyle 2}$ часов, и расшифруйте слово.

$t_1 = 8;$ $t_2 = 6$	$t_{_{1}}=7;\ t_{_{2}}=5$	$t_1 = 3,5;$ $t_2 = 7$	$t_{_{1}}=4,2; \ t_{_{2}}=7$	$t_{_{1}}=4; \ t_{_{2}}=6$	$t_1 = 2,5;$ $t_2 = 4,5$	$t_1 = 2,4;$ $t_2 = 6$	$t_{_{1}}=6; \ t_{_{2}}=10$
В	c	a	М	и	3	0	Т

	120	80	60	84	70	84	75	100	70	52,5	84
Слово											

§ 49. Исследование зависимостей между величинами с использованием графиков реальных процессов

Зависимость между величинами задана формулой $y=-\frac{1}{4}x$. Найдите соответствующие значения y для указанных значений x и расшифруйте слово.

10	-10	-1	1	0	$-rac{2}{5}$	$\frac{2}{5}$	0,8	-0,8
Л	c	и	В	e	Н	0	д	a

Trajes limited Tempunya Van	0,25	2,5	2,5	-2,5	0	-0,2	-0,1	-0,25	0,2	0,1	0,25	0
Слово												

§ 50. Прямая пропорциональность и ее график

Найдите коэффициент прямой пропорциональности y = kx и расшифруйте слово, если ее график проходит через точку A.

$A(\frac{3}{4}; 3)$	A(1; -4)	A(-0,6; 4,2)	$A(\frac{3}{4};-\frac{3}{4})$	$A(-3; -\frac{3}{4})$	
p	0	ц	п	Н	
A(24; -6)	A(-0,1; -0,7)	A(6; 2)	$A(\frac{1}{4};\frac{3}{4})$	$A(3; \frac{3}{7})$	A(4,2; -0,6)
Ь	л	И	c	a	т

	-1	4	-4	-1	-4	4	-7	$\frac{1}{3}$	-4	$\frac{1}{4}$	$\frac{1}{7}$	7	$-\frac{1}{4}$	$\frac{1}{4}$	-4	3	$-rac{1}{7}$	$-\frac{1}{4}$
Слово																		

§ 51. Линейное уравнение с двумя переменными и их системы

Найдите корень уравнения и расшифруйте слово.

5,6-7x=0	0.1x = 0.15	23 - 80x = -1	; <u>Ö</u>
В	e	н	
1,5x = 225	121: x = 1,1	1,21 - 11x = 0	1,44+1,2x=0
p	И	a	у

	-1,2	150	0,11	0,8	0,3	1,5	0,3	110	1,5
Слово									

§ 52. Системы линейных уравнений с двумя переменными

Выразите y через x и расшифруйте слово.

$-\frac{1}{3}y - 7x = 0$	3y-6x=1,5	0.5y - 2x = 1	$-\frac{5}{6}y + 5x = 0$	x + y = 3	3-x+y=0
M	e	Т	ы	c	И

	y = 3 - x	y = x - 3	y = 3 - x	y = 4x + 2	y=2x+0.5	y = -21x	y = 6x
Слово							

§ 53. Решение систем линейных уравнений с двумя переменными способом сложения

Выразите x через y и расшифруйте слово.

-4y-x+2=0	5x - 3y = 1,5	0.5y - 2x = 4	-9y + 3x = 0
0	б	п	c

	x = 3y	x = 0.25y - 2	x = 2 - 4y	x = 3y	x = 2 - 4y	x = 0.6y + 0.3
Слово						

§ 54. Решение систем линейных уравнений с двумя переменными способом подстановки

Выразите y через x и расшифруйте слово.

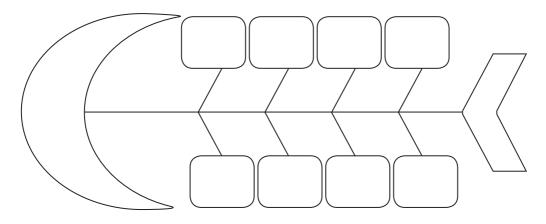
x-y=5	x+5y=0	5y-x=0	x + y = 5	5 - x + y = 0
0	П	c	a	д
$-\frac{1}{5}y-x=0$	y-5x=0	5y-5x=1	$y+\frac{1}{5}-x=0$	
Т	н	В	к	

	$y = -\frac{1}{5}x$	y=5+x	y=x-5	$y = \frac{1}{5}x$	y = -5x	y=5-x	y = 5x	y=5+x	$y = \frac{1}{5} + x$	$y = -\frac{1}{5} + x$	y=5-x
Слово											

§ 55. Решение задач с помощью составления систем уравнений

Найдите решение и расшифруйте слово.

$\begin{cases} y = x - 5 \\ x + y = 7 \end{cases}$	$\begin{cases} y = 6 x \\ x + y = 7 \end{cases}$	$\begin{cases} y - x = 6 \\ x + y = 0 \end{cases}$	$\begin{cases} y + x = 0 \\ xy = -9 \end{cases}$
Д	a	3	Ч


	(-3; 3)	(1; 6)	(6; 1)	(1; 6)	{(-3; 3), (3; -3)}	(1; 6)
Слово						

КАРТОЧКИ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИЕМОВ РАЗВИТИЯ КРИТИЧЕСКОГО МЫШЛЕНИЯ И ОРГАНИЗАЦИИ ИНДИВИДУАЛЬНОЙ И ГРУППОВОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ НА УРОКЕ

§ 1. Отношение двух чисел. Процентное отношение двух чисел

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что всегда можно найти, во сколько раз одно число больше или меньше другого?		
2. Верите ли вы, что 21 больше 5 в 4,2 раза?		
3. Верите ли вы, что для того чтобы узнать какую часть от большего числа составляет меньшее число, надо меньшее число разделить на большее?		
4. Верите ли вы, что число 5 от числа 20 составляет $0,25$ или $\frac{1}{4}$?		
5. Верите ли вы, что частное имеет и другое название: отношение двух чисел?		
6. Верите ли вы, что частное (отношение) показывает, во сколько раз одно число больше или меньше другого, или какую часть меньшее число составляет от большего?		
7. Верите ли вы, что отно- шения 3:4 и 4:3 взаимно обратные?		
8. Верите ли вы, что отношение (частное) можно выразить в процентах?		

§ 2. Пропорция. Основное свойство пропорции

§ 3. Прямо пропорциональная зависимость. Обратно пропорциональная зависимость

Карточка 1

Запишите формулу для нахождения:		
стоимости y за k предметов по цене x		
площади y прямоугольника, если его длина k , ширина x		
массы урожая y , собранного c поля площадью k при урожайности x		
Что произойдет c величиной y , если величину x :		
а) увеличить в 2 раза; в 3 раза?		
б) уменьшить в 2 раза; в 3 раза?		

Карточка 2

Запишите формулу для нахождения:		
расстояния y , пройденного за врем скорости движения x	я k, при	
общей массы y , если масса одного з количество ящиков x	нщика k ,	
выполненной работы y за время k пр водительности труда x	ои произ-	
Что произойдет с величиной y , если величину x :		
а) увеличить в 2 раза; в 3 раза?		
б) уменьшить в 2 раза; в 3 раза?		

Карточка 3

Запишите формулу для нахождения:			
времени y , затраченного на прохождение расстояния k , при скорости движения x			
количества предметов y , если их стоимость k по цене x			
скорости движения y , если за время k пройдено расстояние x			
Что произойдет с величиной y , если величину x :			
а) увеличить в 2 раза; в 3 раза? б) уменьшить в 2 раза; в 3 раза?			

Карточка 4

Запишите формулу для нахождения:		
времени y , затраченного на выполнение р ты k , при производительности труда x	або-	
скорости движения y , затраченной на гождение пути длиной k , за время x	про-	
массы одного ящика y , если их общая ма k , количество ящиков x	acca	
Что произойдет с величиной y , если величину x :		
а) увеличить в 2 раза; в 3 раза?		
б) уменьшить в 2 раза; в 3 раза?		

§ 4. Решение задач с помощью пропорций

Карточка 1	Ответы		
Ответьте на вопросы для решения задачи:	Найдите 3% от числа 400	Найдите число, 3% от которого равны 12	
1. Как по данным задачи найти 1% двумя способами, если искомое число обозначить буквой x ?			
2. Какую пропорцию можно получить по результатам ответа на первый вопрос?			
3. Решите полученную пропорцию и запишите ответ			

Карточка 2	Ответы		
Ответьте на вопросы для решения задачи:	Найдите 7% от числа 200	Найдите число, 7% от которого равны 14	
1. Как по данным задачи найти 1% двумя способами, если искомое число обозначить буквой x ?			
2. Какую пропорцию можно получить по результатам ответа на первый вопрос?			
3. Решите полученную пропорцию и запишите ответ			

Карточка 3	Ответы		
Ответьте на вопросы для решения задачи:	Найдите 9% от числа 300	Найдите число, 9% от которого равны 27	
1. Как по данным задачи найти 1% двумя способами, если искомое число обозначить буквой x ?			
2. Какую пропорцию можно получить по результатам ответа на первый вопрос?			
3. Решите полученную пропорцию и запишите ответ			

Карточка 4	Ответы		
Ответьте на вопросы для решения задачи:	Найдите 9% от числа 300	Найдите число, 9% от которого равны 27	
1. Как по данным задачи найти 1% двумя способами, если искомое число обозначить буквой x ?			
2. Какую пропорцию можно получить по результатам ответа на первый вопрос?			
3. Решите полученную пропорцию и запишите ответ			

§ 5. Масштаб

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что по небольшому изображению очень больших объектов можно всегда узнать их реальные размеры?		
2. Верите ли вы, что по увеличенному размеру очень маленьких объектов можно всегда узнать их реальные размеры?		
3. Верите ли вы, что размеры очень больших объектов при их изображении уменьшают в одно и то же число раз?		
4. Верите ли вы, что размеры очень маленьких объектов при их изображении увеличивают в одно и то же число раз?		

§ 6. Длина окружности. Площадь круга. Шар. Сфера

Карточка 1	Ответы
Постройте окружность, у которой длина радиуса <i>R</i> равна 2 см	
С помощью нитки измерьте длину этой окружности	
Расправив нитку, с помощью линейки узнайте длину C этой окружности	С = см
Вычислите отношение длины окружности C к ее диаметру: $\frac{C}{2R}$. Ответ округлите до целых	<u>C</u> = ≈

Карточка 2	Ответы
Постройте окружность, у которой длина радиуса R равна $1.5~{ m cm}$	
С помощью нитки измерьте длину этой окружности	
Расправив нитку, с помощью линейки узнайте длину C этой окружности	С = см
Вычислите отношение длины окружности C к ее диаметру: $\frac{C}{2R}$. Ответ округлите до целых	$\frac{C}{2R} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \approx \underline{\hspace{1cm}}$

Карточка 3	Ответы
Постройте окружность, у которой длина радиуса R равна 2,5 см	
С помощью нитки измерьте длину этой окружности	
Расправив нитку, с помощью линейки узнайте длину C этой окружности	С = см
Вычислите отношение длины окружности C к ее диаметру: $\frac{C}{2R}$. Ответ округлите до целых	$\frac{C}{2R} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \approx \underline{\hspace{1cm}}$

Карточка 4	Ответы
Постройте окружность, у которой длина радиуса <i>R</i> равна 3 см	
С помощью нитки измерьте длину этой окружности	
Расправив нитку, с помощью линейки узнайте длину <i>С</i> этой окружности	С = см
Вычислите отношение длины окружности C к ее диаметру: $\frac{C}{2R}$. Ответ округлите до целых	$\frac{C}{2R} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \approx \underline{\hspace{1cm}}$

§ 7. Положительные и отрицательные числа. Координатная прямая

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что можно из меньшего числа вычесть большее?		
2. Верите ли вы, что с помощью координатного луча показать вычитание числа 1 из числа 0 нельзя?		
3. Верите ли вы, что для того, чтобы показать вычитание числа 1 из числа 0, надо координатный луч дополнить до прямой?		
4. Верите ли вы, что при вычитании из меньшего числа большего не может получиться натуральное число?		
5. Верите ли вы, что есть числа, кроме натуральных, нуля и известных вам дробей?		
6. Верите ли вы, что для записи результатов вычитания большего числа из меньшего используют числа со знаком "-"?		

§ 8. Противоположные числа. Целые числа. Рациональные числа

Утверждения	Согласен	Не согласен	Вывод
Числа 5 и -5 изображаются на числовой прямой от начала отсчета — точки 0 — на одинаковом расстоянии, но в противоположных направлениях			
Числа 5 и -5 являются противоположными числами			
Противоположные числа отличаются только знаком			
Если число отрицательное, то противоположное ему число положительное			
Есть числа, у которых нет противоположных чисел			
Число 0 противоположно самому себе			

§ 9. Модуль числа и его геометрический смысл

Карточка 1	Ответы
Вычислите модули положительных чисел: $ 4 $, $\left -1\frac{3}{7}\right $, $ 10,15 $, $ 0,234 $, $\left \frac{11}{13}\right $, $ x $, где $x>0$	
Вычислите модуль нуля	
Вычислите модули отрицательных чисел: $ -4 $, $\left -1\frac{3}{7}\right $, $ -10,15 $, $ -0,234 $, $\left -\frac{11}{13}\right $, $ x $, если $x<0$	
Что является модулем положительного числа и числа 0?	
Что является модулем отрицательного числа?	

Карточка 2	Ответы
Вычислите модули положительных чисел: $ 7 $, $\left \frac{13}{17}\right $, $ 79,05 $, $ 0,72 $, $\left 42\frac{1}{3}\right $, $ y $, если $y>0$	
Вычислите модуль нуля	
Вычислите модули отрицательных чисел: -7 ,	
$\left[\begin{array}{c c} -\frac{13}{17}, \ -79,05 , \ -0,72 , \ \left -42rac{1}{3} ight , \ y , \ m ecли \ \it y < 0 \end{array} ight.$	
Что является модулем положительного числа и числа 0?	
Что является модулем отрицательного числа?	

Карточка З	Ответы
Вычислите модули положительных чисел: $ 0,54 ,\ \left \frac{3}{7}\right ,\ 6,915 ,\ 23,4 ,\ \left 90\frac{5}{6}\right ,\ z ,\ $ если $z>0$	
Вычислите модуль нуля	
Вычислите модули отрицательных чисел:	
Что является модулем положительного числа и числа 0?	
Что является модулем отрицательного числа?	

Карточка 4	Ответы
Вычислите модули положительных чисел: $ 30 $, $ 51\frac{9}{11} $, $ 0,8 $, $ 4,28 $, $ \frac{3}{7} $, $ a $, если $a>0$	
Вычислите модуль нуля	
Вычислите модули отрицательных чисел: $ -30 ,\ \left -51\frac{9}{11}\right ,\ \left -0.8\right ,\ \left -4.28\right ,\ \left -\frac{3}{7}\right ,\ a ,\ $ если $a<0$	
Что является модулем положительного числа и числа 0?	
Что является модулем отрицательного числа?	

§ 10. Сравнение рациональных чисел

Утверждения	Согласен	Не согласен	Вывод
Рациональные числа, как и натуральные, можно сравнивать с помощью числовой прямой			
Из двух рациональных чисел меньше то, которое на числовой прямой находится левее, и больше то, которое правее			
Любое положительное рациональное число больше нуля			
Любое отрицательное рациональное число меньше нуля			
Число a положительное можно записать кратко $a>0$			
Число a отрицательное можно записать кратко $a < 0$			
Число a неположительное можно записать кратко $a\leqslant 0$			
Число a неотрицательное можно записать кратко $a \geqslant 0$			
Любое положительное рациональное число больше отрицательного рационального числа			
Любое отрицательное рациональное число меньше положительного рационального числа			
Для любого рационального числа a верно неравенство $a < 0$			

§ 11. Сложение рациональных чисел с помощью координатной прямой

Утверждения		Согласен	Не согласен	Вывод
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x			
Перемещение точки вправодинатной прямой обозначак тельными числами, перемещ влево — отрицательными ч	от положи- ение точки			
Любое число от прибавления ложительного числа увеличи прибавления отрицательног уменьшается, от прибавлени не изменяется	ивается, от о числа —			
+5 -12 -5 -7 -2	0 E 0 1 x			
Для того чтобы к числу вить 5, надо из точки с коор, переместиться по координать вправо на 5 единиц, чтобы —5, надо из точки с коорд переместиться по координать влево на 5 единиц	цинатой –7 ной прямой прибавить инатой –7			
-7 + 5 = -2 $-7 + (-7 + 1)$	5) = -12			
-2 + 2 = 0 $2 + (-2)$				

§ 12. Сложение отрицательных рациональных чисел

Задания	Ответы
Запишите сумму, если известно, что точка $A(4)$ на координатной прямой переместилась влево на 7 единиц	4 + (-7)
Запишите сумму, если известно, что точка $A(-4)$ на координатной прямой переместилась вправо на 7 единиц	-4 + 7
Объясните с помощью координатной прямой, что означает запись $8+(-11)$	точка $A(8)$ на координатной прямой переместилась влево на 11 единиц
Объясните с помощью координатной прямой, что означает запись $-8+11$	точка A(-8) на координатной прямой переместилась вправо на 11 единиц

Карточка 1	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-3+(-8)=-11;$ $-1,5+(-8,5)=-10;$ $-2\frac{3}{4}+(-1\frac{1}{4})=-4$	
Как сложить два отрицательных числа, не используя числовую прямую?	

Карточка 2	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-3 + (-6) = -9;$	
$-2,5 + (-5,5) = -8;$ $-4\frac{1}{3} + (-2\frac{2}{3}) = -7$	
Как сложить два отрицательных числа, не используя числовую прямую?	

Карточка 3	Ответы
Убедитесь с помощью числовой прямой, что верны равенства:	
-7 + (-5) = -12;	
-3,5+(-3,5)=-7;	
$-\frac{1}{2} + (-4\frac{1}{2}) = -5$	
Как сложить два отрицательных числа, не используя числовую прямую?	

Карточка 4	Ответы
Убедитесь с помощью числовой прямой,	
что верны равенства:	
-6 + (-6) = -12;	
-7.5 + (-3.5) = -11;	
$-\frac{3}{4} + (-6\frac{1}{4}) = -7$	
Как сложить два отрицательных числа, не используя числовую прямую?	

§ 13. Сложение рациональных чисел с разными знаками

Задания	Ответы
Запишите сумму, если известно, что точка $A(5)$ на координатной прямой переместилась влево на 9 единиц	5 + (-9)
Запишите сумму, если известно, что точка $A(-5)$ на координатной прямой переместилась вправо на 9 единиц	-5 + 9
Объясните с помощью координатной прямой, что означает запись $3+(-8)$	точка $A(3)$ на координатной прямой переместилась влево на 8 единиц
Объясните с помощью координатной прямой, что означает запись $-3+8$	точка $A(-3)$ на координатной прямой переместилась вправо на 8 единиц

Карточка 1	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-3+8=5$; $8+(-3)=5$	
Убедитесь с помощью числовой прямой, что верны равенства: $-8+3=-5;$ $3+(-8)=-5$	
Какие числа (положительные, отрицательные или нуль) могут получиться при сложении рациональных чисел с разными знаками?	
Сравните модули слагаемых и значения суммы	
В каком случае при сложении рациональных чисел с разными знаками получится отрицательное число?	
В каком случае при сложении рациональных чисел с разными знаками получится положительное число?	
Как сложить два рациональных числа с разными знаками, не используя числовую прямую?	

Карточка 2	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-6+9=3;$ $9+(-6)=3$	
Убедитесь с помощью числовой прямой, что верны равенства: $-9+6=-3;$ $6+(-9)=-3$	
Какие числа (положительные, отрицательные или нуль) могут получиться при сложении рациональных чисел с разными знаками?	
Сравните модули слагаемых и значения суммы	
В каком случае при сложении рациональных чисел с разными знаками получится отрицательное число?	
В каком случае при сложении рациональных чисел с разными знаками получится положительное число?	
Как сложить два рациональных числа с разными знаками, не используя числовую прямую?	

Карточка 3	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-4+7=3;$ $7+(-4)=3$	
Убедитесь с помощью числовой прямой, что верны равенства: $-7+4=-3;$ $4+(-7)=-3$	
Какие числа (положительные, отрицательные или нуль) могут получиться при сложении рациональных чисел с разными знаками?	
Сравните модули слагаемых и значения суммы	
В каком случае при сложении рациональных чисел с разными знаками получится отрицательное число?	
В каком случае при сложении рациональных чисел с разными знаками получится положительное число?	
Как сложить два рациональных числа с разными знаками, не используя числовую прямую?	

Карточка 4	Ответы
Убедитесь с помощью числовой прямой, что верны равенства: $-5+11=6$; $11+(-5)=6$	
Убедитесь с помощью числовой прямой, что верны равенства: $-11+5=-6;$ $5+(-11)=-6$	
Какие числа (положительные, отрицательные или нуль) могут получиться при сложении рациональных чисел с разными знаками?	
Сравните модули слагаемых и значения суммы	
В каком случае при сложении рациональных чисел с разными знаками получится отрицательное число?	
В каком случае при сложении рациональных чисел с разными знаками получится положительное число?	
Как сложить два рациональных числа с разными знаками, не используя числовую прямую?	

§ 14. Свойства сложения рациональных чисел

Карточка 1

Вычислите значения выражений, содержащих рациональные числа:		
-4 + (-7)	-7 + (-4)	
Верно ли равенство $-4 + (-7) = -7 + (-4)$?		
Вычислите значения выражений, содержащих рациональные числа:		
4 + (-7)	-7 + 4	
Верно ли равенство $4 + (-7) = -7 + 4$?		
Верно ли равенство $-4+7=7+(-4)$?		
Если a, b — рациональные числа, то как можно преобразовать выражение $a+b$?		
Выполняется ли переместительное свойство сложения для рациональных чисел?		

Карточка 2

Вычислите значения выражений, содержащих рациональные числа:

$$-2.5 + (-4.5)$$
 $-4.5 + (-2.5)$

Верно ли равенство -2.5 + (-4.5) = -4.5 + (-2.5)?

Вычислите значения выражений, содержащих рациональные числа:

$$-2,5+4,5$$
 $4,5+(-2,5)$

Верно ли равенство -2.5 + 4.5 = 4.5 + (-2.5)?

Верно ли равенство -4.5 + 2.5 = 2.5 + (-4.5)?

Если a, b — рациональные числа, то как можно преобразовать выражение a + b?

Выполняется ли переместительное свойство сложения для рациональных чисел?

Карточка 3

Вычислите значения выражений, содержащих рациональные числа:

$$-5 + (-2 + 4)$$
 $(-5 + (-2)) + 4$

Верно ли равенство -5 + (-2 + 4) = (-5 + (-2)) + 4?

Вычислите значения выражений, содержащих рацональные числа:

$$\left(-7 + \frac{3}{5}\right) + \frac{2}{5}$$
 $-7 + \left(\frac{3}{5} + \frac{2}{5}\right)$

Верно ли равенство $\left(-7 + \frac{3}{5}\right) + \frac{2}{5} = -7 + \left(\frac{3}{5} + \frac{2}{5}\right)$?

Если a, b, c — рациональные числа, то как можно преобразовать выражение (a + b) + c?

Выполняется ли сочетательное свойство сложения для рациональных чисел?

Карточка 4

Вычислите значения выражений, содержащих рациональные числа:

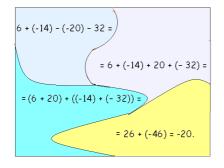
$$-7 + (-6 + 4)$$
 $(-7 + (-6)) + 4$

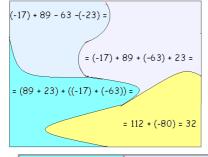
Верно ли равенство -7 + (-6 + 4) = (-7 + (-6)) + 4?

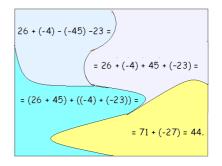
Вычислите значения выражений, содержащих рациональные числа:

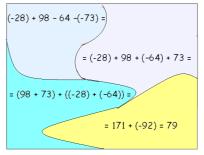
$$(-3+0,6)+0,4$$
 $-3+(0,6+0,4)$

Верно ли равенство (-3 + 0.6) + 0.4 = -3 + (0.6 + 0.4)?

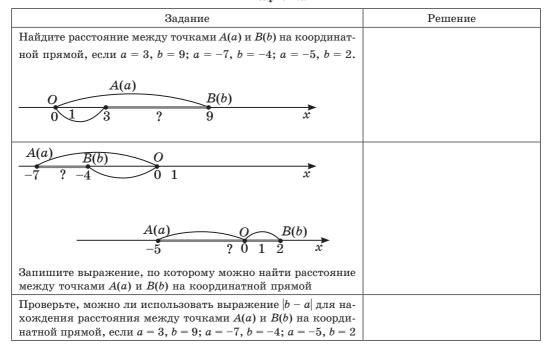

Если a, b, c — рациональные числа, то как можно преобразовать выражение (a + b) + c?

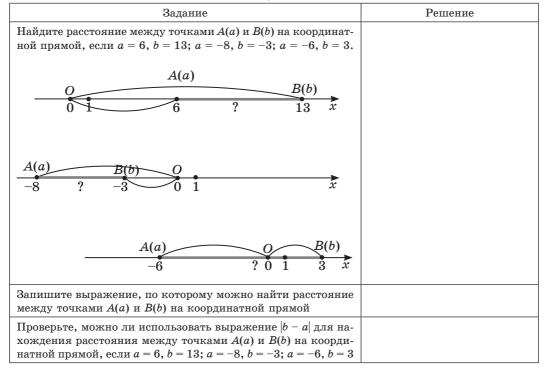

Выполняется ли сочетательное свойство сложения для рациональных чисел?


§ 15. Вычитание рациональных чисел


Вопросы	Согласен	Не согласен	Вывод
Вычитая из числа b число a , где $a>0$, и			
прибавляя к b число $(-a)$, надо переме-			
ститься из точки с координатой b влево			
на a единиц, поэтому $b - a = b + (-a)$			
Вычитание рациональных чисел можно			
заменить сложением			
Чтобы из одного рационального числа			
вычесть другое рациональное число,			
нужно к уменьшаемому прибавить			
число, противоположное вычитаемому			
Вычитание рациональных чисел всегда			
выполнимо			
При вычитании одного отрицательного			
числа из другого отрицательного числа			
всегда получится отрицательное число			

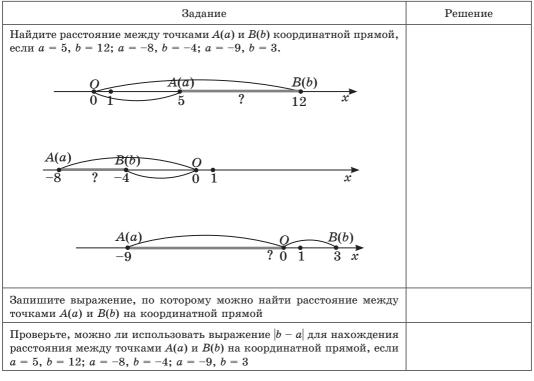
§ 16. Сложение и вычитание рациональных чисел





§ 17. Расстояние между точками координатной прямой

Карточка 1



Карточка 2

Карточка 3

Tuapio nia o		
Задание	Решение	
Найдите расстояние между точками $A(a)$ и $B(b)$ на координатной прямой, если $a=4,b=12;a=-6,b=-2;a=-10,b=2,5.$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Запишите выражение, по которому можно найти расстояние между точками $A(a)$ и $B(b)$ на координатной прямой		
Проверьте, можно ли использовать выражение $ b-a $ для нахождения расстояния между точками $A(a)$ и $B(b)$ на координатной прямой, если $a=4$, $b=12$; $a=-6$, $b=-2$; $a=-10$, $b=2,5$		

§ 18. Умножение рациональных чисел

Карточка 1

Задания	Решения
Вычислите значение выражения (-4) · 3, если известно,	
что смысл произведения отрицательного числа на нату-	
ральное такой же, как и умножение натуральных чисел	
Сравните значения выражений 3 · (-4) и (-4) · 3 при	
условии, что для рациональных чисел выполняются все	
известные свойства арифметических действий	
Каким (положительным или отрицательным) числом	
является произведение двух рациональных чисел с	
разными знаками?	
Как умножить два рациональных числа с разными	
знаками?	
Какими числами являются пары чисел:	
4 и (-1) · 4; 0,8 и 0,8 · (-1)?	
Если это свойство умножения положительного числа и	
(-1) распространить на отрицательные числа, то получим:	
$(1) -21 \cdot (-1) = \dots;$	
$(-1) \cdot (-4) = \dots$	
Вычислите $-3 \cdot (-4)$, используя равенство $-3 = (-1) \cdot 3$	
и свойства арифметических действий	
Каким (положительным или отрицательным) числом	
является произведение двух отрицательных рациональ-	
ных чисел?	

Задания	Решения
Вычислите значение выражения $(-5)\cdot 4$, если известно, что смысл произведения отрицательного числа на натуральное такой же, как и умножение натуральных чисел	
Сравните значения выражений $4 \cdot (-5)$ и $(-5) \cdot 4$ при условии, что для рациональных чисел выполняются все известные вам свойства арифметических действий	
Каким (положительным или отрицательным) числом является произведение двух рациональных чисел с разными знаками?	
Как умножить два рациональных числа с разными знаками?	
Какими числами являются пары чисел: 7 и $(-1) \cdot 7$; $0,25$ и $0,25 \cdot (-1)$? Если это свойство умножения положительного числа и (-1) распространить на отрицательные числа, то получим: $1) -17 \cdot (-1) =$; $2) (-1) \cdot (-17) =$	
Вычислите $-5 \cdot (-4)$, используя равенство $-5 = (-1) \cdot 5$ и свойства арифметических действий	
Каким (положительным или отрицательным) числом является произведение двух отрицательных рациональных чисел?	

Карточка 3

Задания	Решения
	1 cmciina
Вычислите значение выражения (-9) · 3, если известно,	
что смысл произведения отрицательного числа на нату-	
ральное такой же, как и умножение натуральных чисел	
Сравните значения выражений 3 · (-9) и (-9) · 3 при	
условии, что для рациональных чисел выполняются все	
известные свойства арифметических действий	
Каким (положительным или отрицательным) числом	
является произведение двух рациональных чисел с	
разными знаками?	
Как умножить два рациональных числа с разными	
знаками?	
Какими числами являются пары чисел:	
2 2	
$\left \frac{2}{3} \text{ if } (-1) \cdot \frac{2}{3}; \right 0.5 \text{ if } 0.5 \cdot (-1)?$	
Если это свойство умножения положительного числа и	
(-1) распространить на отрицательные числа, то полу-	
чим:	
1) $-4,4 \cdot (-1) =;$ 2) $(-1) \cdot (-4,4) =$	
Вычислите $-3 \cdot (-9)$, используя равенство $-3 = (-1) \cdot 3$	
и свойства арифметических действий	
Каким (положительным или отрицательным) числом	
является произведение двух отрицательных рациональ-	
ных чисел?	

Задания	Решения
Вычислите значение выражения $(-5)\cdot 4$, если известно, что смысл произведения отрицательного числа на натуральное такой же, как и умножение натуральных чисел	
Сравните значения выражений $4 \cdot (-5)$ и $(-5) \cdot 4$ при условии, что для рациональных чисел выполняются все известные вам свойства арифметических действий	
Каким (положительным или отрицательным) числом является произведение двух рациональных чисел с разными знаками?	
Как умножить два рациональных числа с разными знаками?	
Какими числами являются пары чисел: 20 и $(-1) \cdot 20$; 2,25 и 2,25 · (-1) ? Если это свойство умножения положительного числа и (-1) распространить на отрицательные числа, то получим: $(-1) \cdot (-1) = \dots$; 2) $(-1) \cdot (-49) = \dots$	
Вычислите $-5 \cdot (-4)$, используя равенство $-5 = (-1) \cdot 5$ и свойства арифметических действий	
Каким (положительным или отрицательным) числом является произведение двух отрицательных рациональных чисел?	

§ 19. Переместительное и сочетательное свойства умножения рациональных чисел

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что для рациональных чисел выполняется переместительное свойство умножения?		
2. Верите ли вы, что для рациональных чисел выполняется сочетательное свойство умножения?		
3. Верите ли вы, что если число отрицательных множителей нечетное, то значение произведения этих множителей — число отрицательное?		
4. Верите ли вы, что если число отрицательных множителей четное, то значение произведения — число положительное?		

§ 20. Деление рациональных чисел

Вопросы	Согласен	Не согласен	Вывод
Равенство 15: (-5) = -3 является верным			
Равенство -15: (-3) = 3 является верным			
Если число 2 разделить на 3, получим бесконечную периодическую десятичную дробь с периодом, равным 6			
Равенство -90 : 45 = 2 является верным			
Равенство -90 : (-45) = -2 является неверным			

§ 21. Арифметические действия с рациональными числами

$$(1\frac{1}{5}:0,25) - 1,8(3) = (1,2:0,25) - 1\frac{83-8}{90} = 4,8 - 1\frac{5}{6} = 3 + (\frac{4}{5} - \frac{5}{6}) = 3 - \frac{1}{30} = 2\frac{29}{30}$$

$$0,3 + 0,7(6) + 1\frac{4}{11} = \frac{3}{10} + \frac{76-7}{90} + 1\frac{4}{11} = \frac{3}{10} + \frac{23}{30} + 1\frac{4}{11} = \frac{32}{30} + 1\frac{4}{11} = 1\frac{1}{15} + 1\frac{4}{11} = 2\frac{71}{165} = 2,430303030... = 2,4(30)$$

$$0,(1122) + \frac{67}{303} - 3,(3) \cdot 0,3 = \frac{1122}{9999} + \frac{67}{303} - 3\frac{3}{9} \cdot 0,3 = \frac{374}{3333} + \frac{67}{303} - 3\frac{1}{3} \cdot 0,3 = \frac{374+737}{3333} - 3\frac{1}{3} \cdot \frac{3}{10} = \frac{1}{3} - 1 = -\frac{2}{3}$$

§ 22. Переменная

	"До"	"После"	Вывод
Вопросы	Я думаю, что		Я прав (не прав), так как
Почему буквы в буквенных выражениях, равенствах и неравенствах с буквами назвали переменными?			
Почему буквенные выражения назвали выражениями с переменными?			
Всегда ли можно найти значение числового выражения?			
Если значение числового выражения найти невозможно, то в каких случаях?			
Всегда ли можно найти значение выражения с переменной?			
В каких случаях нельзя найти значение выражения с переменной?			

§ 23. Распределительное свойство умножения рациональных чисел. Раскрытие скобок

Карточка 1

Вычислите значения выражений, содержащих рациональные числа:

$$-25\cdot\left(0,4+\frac{1}{5}\right)$$

$$-25\cdot 0,4+\left(-25\right)\cdot \frac{1}{5}$$

Верно ли равенство $-25 \cdot \left(0, 4 + \frac{1}{5}\right) = -25 \cdot 0, 4 + \left(-25\right) \cdot \frac{1}{5}$?

Если a, b, c — рациональные числа, то как можно преобразовать выражение $a \cdot (b+c)$?

Вычислите значения выражений, содержащих рациональные числа:

$$\left(0,6+\frac{1}{5}\right)\cdot\frac{5}{6}$$

$$0,6\cdot\frac{5}{6}+\frac{1}{5}\cdot\frac{5}{6}$$

Верно ли равенство $\left(0,6+\frac{1}{5}\right)\cdot\frac{5}{6}=0,6\cdot\frac{5}{6}+\frac{1}{5}\cdot\frac{5}{6}$?

Если a, b, c — рациональные числа, то как можно преобразовать выражение $(a + b) \cdot c$?

Выполняется ли распределительное свойство умножения для рациональных чисел?

Карточка 2

Вычислите значения выражений, содержащих рациональные числа:

$$0.8 \cdot \left(-125 + \frac{1}{8}\right)$$

$$0,8 \cdot \left(-125\right) + 0,8 \cdot \frac{1}{8}$$

Верно ли равенство $0.8 \cdot \left(-125 + \frac{1}{8}\right) = 0.8 \cdot \left(-125\right) + 0.8 \cdot \frac{1}{8}$?

Если a, b, c — рациональные числа, то как можно преобразовать выражение $a \cdot (b + c)$?

Вычислите значения выражений, содержащих рациональные числа:

$$\left(0,16+\frac{1}{7}\right)\cdot\frac{7}{8}$$

$$0,16 \cdot \frac{1}{7} + \frac{1}{7} \cdot \frac{7}{8}$$

Верно ли равенство $\left(0,16+\frac{1}{7}\right)\cdot\frac{7}{8}=0,16\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{7}{8}?$

Если $a,\,b,\,c$ — рациональные числа, то как можно преобразовать выражение $(a\ +\ b)\cdot c?$

Выполняется ли распределительное свойство умножения для рациональных чисел?

Карточка 3

Вычислите значения выражений, содержащих рациональные числа:

$$-50 \cdot \left(0,2 + \frac{4}{5}\right) \qquad \qquad -50 \cdot 0,2 + \left(-50\right) \cdot \frac{4}{5}$$

Верно ли равенство
$$-50 \cdot \left(0,2+\frac{4}{5}\right) = -50 \cdot 0,2 + \left(-50\right) \cdot \frac{4}{5}$$
?

Если a, b, c — рациональные числа, то как можно преобразовать выражение $a \cdot (b+c)$?

Вычислите значения выражений, содержащих рациональные числа:

$$\left(0,27+\frac{3}{5}\right)\cdot\frac{1}{3}$$
 $\left(0,27\cdot\frac{1}{3}+\frac{3}{5}\cdot\frac{1}{3}\right)$

Верно ли равенство
$$\left(0,27+\frac{3}{5}\right)\cdot\frac{1}{3}=0,27\cdot\frac{1}{3}+\frac{3}{5}\cdot\frac{1}{3}?$$

Если a, b, c — рациональные числа, то как можно преобразовать выражение $(a + b) \cdot c$?

Выполняется ли распределительное свойство умножения для рациональных чисел?

Карточка 4

Вычислите значения выражений, содержащих рациональные числа:

$$-17 \cdot \left(0,1+\frac{1}{17}\right)$$
 $-17 \cdot 0,1+\left(-17\right) \cdot \frac{1}{17}$

Верно ли равенство
$$-17 \cdot \left(0,1+\frac{1}{17}\right) = -17 \cdot 0,1+\left(-17\right) \cdot \frac{1}{17}$$
?

Если a, b, c — рациональные числа, то как можно преобразовать выражение $a\cdot (b+c)$?

Вычислите значения выражений, содержащих рациональные числа:

$$\left(33 + \frac{1}{5}\right) \cdot \frac{5}{11}$$

$$33 \cdot \frac{5}{11} + \frac{1}{5} \cdot \frac{5}{11}$$

Верно ли равенство
$$\left(33 + \frac{1}{5}\right) \cdot \frac{5}{11} = 33 \cdot \frac{5}{11} + \frac{1}{5} \cdot \frac{5}{11}$$
?

Если a,b,c — рациональные числа, то как можно преобразовать выражение $(a + b) \cdot c$?

Выполняется ли распределительное свойство умножения для рациональных чисел?

§ 24. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых

Вопросы	"До"	"После"	Вывод
	Я думаю, что		Я прав (не прав), так как
Чему равен коэффициент выражения $2 \cdot x \cdot 10$?			
На каком месте принято записывать коэффициент: перед буквенными множителями $2x^2y$ или после $x^2y \cdot 2$?			
Почему коэффициент выражения x^4y^7 равен 1?			
Как записать выражение $-1 \cdot abc$, у которого коэффициент равен -1 ?			

§ 25. Тождество. Тождественные преобразования выражений

Простые вопросы
Интерпретационные вопросы
Творческие вопросы
Оценочные вопросы
Протепутностиго помрости
Практические вопросы
Уточняющие вопросы

§ 26. Решение текстовых задач

Карточка 1		
Задания	Решения	
Решите задачу, используя рисунок. Из пункта B выехал автобус со скоростью a км/ч. На каком расстоянии от пункта A будет автобус через 2 ч, если расстояние между A и B равно 250 км?		

Карточка 2		
Задания	Решения	
Решите задачу, используя рисунок. Из пункта B выехал автомобиль со скоростью a км/ч и автобус со скоростью v км/ч. Какое расстояние будет между ними через 2 ч?		
$1.\underbrace{\frac{a_{\text{KM/Y}}}{A} \frac{V_{\text{KM/Y}}}{B}}^{2 \text{ Y}}$		
$2 \underbrace{\frac{2}{A} \underbrace{\frac{V_{\text{KM/Y}}}{a_{\text{KM/Y}}}}_{B}}_{C}$		

Карточка 3		
Задания	Решения	
Решите задачу, используя рисунок. Из пункта B вышел турист со скоростью 5 км/ч. На каком расстоянии от пункта A он будет через 2 ч, если расстояние между A и B равно s км? 2 ч 1. $\frac{5 \text{км/ч}}{A}$ B		

§ 27. Числовые равенства и их свойства

Вопросы	Верю + Не верю –	Вывод
1. Верите ли вы, что 6 - 7 = 101 - 100 является числовым равенством?		
2. Верите ли вы, что числовые равенства бывают верные и неверные?		
3. Верите ли вы, что если $a = b$ — верное числовое равенство, то и $a + c = b + c$ — верное числовое равенство?		
4. Верите ли вы, что если $a = b$ — верное числовое равенство, то и $a \cdot c = b \cdot c$ — верное числовое равенство?		
5. Верите ли вы, что если $a = b$, $b = c$ — верные числовые равенства, то $a = c$ — верное числовое равенство?		
6. Верите ли вы, что если $a=b, c=d$ — верные числовые равенства, то и $a+c=b+d$ — верное числовое равенство?		
7. Верите ли вы, что если $a=b, c=d$ — верные числовые равенства, то и $a\cdot c=b\cdot d$ — верное числовое равенство?		

§ 28. Решение уравнений

"V" — уже	// · • ••	" - " — думал	"?" — не понял,
знал	" + " — новое	иначе	есть вопросы

§ 29. Линейное уравнение с одной переменной

Карточка 1	Ответы
Решите линейное уравнение с одной переменной $ax = b$:	
1) $16x = 8$	
2) $0x = 8$	
3) 0x = 0	
Сколько решений имеет линейное уравнение с одной переменной $ax = b$, если:	
$a \neq 0$	
$a=0, b\neq 0$	
a = 0, b = 0?	

Карточка 2	Ответы
Решите линейное уравнение с одной переменной $ax = b$:	
1) $6x = 0.36$	
2) $0x = 36$	
3) $0x = 0$	
Сколько решений имеет линейное уравнение с одной переменной $ax = b$, если:	
$a \neq 0$	
$a=0, b\neq 0$	
a = 0, b = 0?	

Карточка 3	Ответы
Решите линейное уравнение с одной переменной $ax = b$:	
1) 9x = 3	
2) 0x = 3	
3) 0x = 0	
Сколько решений имеет линейное уравнение с одной переменной $ax = b$, если:	
$a \neq 0$	
$a=0, b\neq 0$	
a = 0, b = 0?	

Карточка 4	Ответы
Решите линейное уравнение с одной переменной $ax = b$:	
1) $5x = 8$	
2) $0x = 8$	
3) 0x = 0	
Сколько решений имеет линейное уравнение с одной переменной $ax = b$, если:	
$a \neq 0$	
$a=0, b\neq 0$	
a = 0, b = 0?	

§ 30. Линейное уравнение, содержащее переменную под знаком модуля

"V" — уже знал	" + " — новое	" – " — думал иначе	"?"— не понял, есть вопросы

§ 32. Числовые неравенства и их свойства

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что 7 – 6 < 101 – 100 является числовым неравенством?		
2. Верите ли вы, что числовые неравенства бывают верные и неверные?		
3. Верите ли вы, что числовые неравенства бывают строгие и нестрогие?		
4. Верите ли вы, что числовые неравенства бывают двойные?		
5. Верите ли вы, что знаки неравенства < и >, ≤ и ≥ называют противо- положными друг другу?		
6. Верите ли вы, что если $a > b$ верное числовое неравенство, то и $a + c > b + c$ верное числовое неравенство?		
7. Верите ли вы, что если $a > b$ — верное числовое неравенство, то и $a \cdot c > b \cdot c$ — верное числовое неравенство?		
8. Верите ли вы, что если $a>b$, $b>c$ —верные числовые равенства, то и $a>c$ — верное числовое неравенство?		
9. Верите ли вы, что если $a>b$, $c>d$ — верные числовые неравенства, то и $a+c>b+d$ — верное числовое неравенство?		
10. Верите ли вы, что если $a>b$, $c>d$ — верные числовые неравенства, то и $a\cdot c>b\cdot d$ — верное числовое неравенство?		
11. Верите ли вы, что если $a > b$, $c > d$ — верные числовые неравенства, то и $\frac{a}{d} > \frac{b}{c}$ — верное числовое неравенство?		

§ 33. Числовые промежутки

Вопросы	Согласен	Не согласен	Вывод
Решением неравенства $0 \cdot x > -1$ является любое число из промежутка $(-\infty; +\infty)$, который называют <i>числовой прямой</i> и изображают так, как показано на рисунке.			
Решением неравенства $x \le 1$ является любое число из промежутка ($-\infty$; 1], который называют <i>числовым лучом</i> и изображают так, как показано на рисунке.			
Решением неравенства $x \ge 1$ является любое число из промежутка [1; $+\infty$), который называют <i>числовым лучом</i> и изображают так, как показано на рисунке.			
Решением неравенства $x < 1$ является любое число из промежутка ($-\infty$; 1), который называют <i>открытым числовым лучом</i> и изображают так, как показано на рисунке.			
Решением неравенства $x>1$ является любое число из промежутка (1; $+\infty$), который называют <i>открытым числовым лучом</i> и изображают так, как показано на рисунке. 1 x или			
Решением неравенства $-3 \le x \le 1$ является любое число из промежутка $[-3; 1]$, который называют <i>числовым отрезком</i> и изображают так, как показано на рисунке.			
Решением неравенства $-3 < x < 1$ является любое число из промежутка (-3; 1), который называют <i>числовым интервалом</i> и изображают так, как показано на рисунке.			
Решением неравенства $-3 < x \le 1$ является любое число из промежутка $(-3; 1]$, который называют <i>числовым полу-интервалом</i> и изображают так, как показано на рисунке. 3 или 3 1 x			
Решением неравенства $-3 \le x < 1$ является любое число из промежутка [-3; 1), который называют <i>числовым полуинтервалом</i> и изображают так, как показано на рисунке.			

§ 34. Объединение и пересечение числовых промежутков

Вопросы	"До"	"После"	Вывод
	Я думаю, что		Я прав (не прав), так как
Из каких чисел состоит объединение числовых промежутков?			
Что является объединением числовых отрезков [-4; 1] и [1; 2]?			
-4 1 2 x			
Что является объединением числовых лучей $(-\infty; 1]$ и $[-2; +\infty)$?			
-2 1 1 x			
Как, используя знак объединения \cup , записать объединение числовых интервалов (-3; 2) и (4; 8)?			
Из каких чисел состоит пересечение числовых промежутков?			
Что является пересечением числовых отрезков [-4; 1] и [1; 2]?			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Что является пересечением числовых лучей $(-\infty; 1]$ и $[-2; +\infty)$?			
$\begin{pmatrix} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{pmatrix}$			
Как, используя знак пересечения \cap , записать пересечение числовых интервалов (-3; 2) и (4; 8)?			
Что является пересечением числовых интервалов (-3; 2) и (4; 8)?			
-3 2 4 -3 x			

§ 35. Линейные неравенства с одной переменной Простые вопросы Интерпретационные (объясняющие) вопросы Творческие вопросы Оценочные вопросы Практические вопросы Уточняющие вопросы

§ 36. Решение линейных неравенств с одной переменной

Карточка 1	Ответы
Решите линейное неравенство с одной переменной:	
$\boxed{0\cdot x<-0.5}$	
$\boxed{0\cdot x<0,5}$	
$0 \cdot x < 0$	
Решите линейное неравенство с одной переменной:	
$\boxed{0\cdot x > -0.5}$	
$\boxed{0\cdot x>0,5}$	
$\boxed{0\cdot x>0}$	

Карточка 2	Ответы
Решите линейное неравенство с одной переменной:	
$\boxed{0\cdot x<-3}$	
$\boxed{0 \cdot x < 3}$	
$\boxed{0\cdot x<0}$	
Решите линейное неравенство с одной переменной:	
$\boxed{0\cdot x > -3}$	
$\boxed{0\cdot x>3}$	
$0 \cdot x > 0$	

Карточка 3	Ответы
Решите линейное неравенство с одной переменной:	
$0\cdot x < -rac{3}{7}$	
$0 \cdot x < rac{3}{7}$	
$\boxed{0\cdot x<0}$	
Решите линейное неравенство с одной переменной:	
$0\cdot x > -rac{3}{7}$	
$0 \cdot x > \frac{3}{7}$	
$0 \cdot x > 0$	

Карточка 4	Ответы
Решите линейное неравенство с одной переменной $0 \cdot x < b$:	
при b < 0	
при $b>0$	
при $b=0$	
Решите линейное неравенство с одной переменной $0\cdot x>b$	
при b < 0	
при $b>0$	
при $b=0$	

§ 37. Решение систем линейных неравенств с одной переменной

Утверждения	Согласен	Не согласен	Вывод
В тех случаях, когда требуется найти значения переменной, при которых два или несколько неравенств с одной переменной одновременно верные, рассматривают системы неравенств			
Для записи системы неравенств используют знак системы — фигурную скобку: $\begin{cases} 4x \leqslant 17, \\ 9x - 32 \geqslant 0 \end{cases}$			
Решением системы неравенств с одной переменной называется такое значение переменной, при подстановке которого в каждое неравенство системы оно становится верным числовым неравенством			
Число 4 является решением си- $\begin{cases} 4x \leqslant 17, \\ 9x - 32 \geqslant 0 \end{cases}$			
Число 0 является решением системы $\begin{cases} 4x \leqslant 17, \\ 9x - 32 \geqslant 0 \end{cases}$			
Решить систему неравенств с одной переменной — значит найти множество всех его решений			
Для того чтобы решить систему неравенств с одной переменной, надо решить каждое неравенство в отдельности, затем найти их общее решение			
$\begin{cases} 4x \le 17, \\ 9x - 32 \ge 0 \end{cases}$			
Решения первого и второго неравенства показаны на рисунке: $\frac{2}{3\frac{5}{9}} = 4,25$			
<i>Omsem</i> : $[3 \frac{5}{9}; 4,25]$			

§ 38. Линейное неравенство, содержащее переменную под знаком модуля

Вопросы	"До"	"После"	Вывод
	Я думаю, что		Я прав (не прав), так как
Что на координатной прямой показывает $ x $?			
Для точек с какими координатами $ x = 7$?			
Для точек с какими координатами $ x < 7$?			
Какому двойному неравенству равносильно неравенство $ x < 7$?			
Какому двойному неравенству равносильно неравенство $ x \le 7$?			
Будет ли неравенство $-7 \le x \le 7$ равносильно системе неравенств $\begin{cases} x \le 7, \\ x \ge -7? \end{cases}$			
Что является решением неравенства $ x \le 0$?			
Что является решением неравенства $ x \le -7$?			
Что является решением неравенства $ x < -7$?			
Для точек с какими координатами $ x \geqslant 4$?			
Будет ли неравенство $ x \geqslant 4$ равносильно совокупности неравенств $\begin{bmatrix} x\geqslant 4,\\x\geqslant -4?\end{bmatrix}$			
Почему решением неравенств $ x \geqslant 0$, $ x \geqslant -4$ и $ x >-4$ является $(-\infty;+\infty)$?			

§ 39. Решение линейных неравенств, содержащих переменную под знаком модуля

Карточка 1

Задания	Ответы
Замените неравенство $ 3-x \le 7$ равносильной системой неравенств и решите ее	
Замените неравенство $ 3-x \le 7$ равносильным двойным неравенством и решите его	
Замените неравенство $ 3-x >7$ равносильной совокупностью неравенств и решите ее	

Карточка 2

Задания	Ответы
Замените неравенство $ x-5 \le 8$ равносильной системой неравенств и решите ее	
Замените неравенство $ x-5 \le 8$ равносильным двойным неравенством и решите его	
Замените неравенство $ x-5 >8$ равносильной совокупностью неравенств и решите ее	

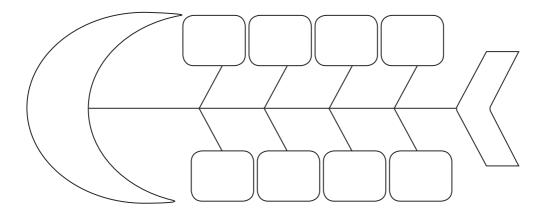
Карточка 3

Задания	Ответы
Замените неравенство $ 7+x \le 6$ равносильной системой неравенств и решите ее	
Замените неравенство $ 7+x \le 6$ равносильным двойным неравенством и решите его	
Замените неравенство $ 7+x >6$ равносильной совокупностью неравенств и решите ее	

Задания	Ответы
Замените неравенство $ x+2 \le 7$ равносильной системой неравенств и решите ее	
Замените неравенство $ x+2 \le 7$ равносильным двойным неравенством и решите его	
Замените неравенство $ x+2 > 7$ равносильной совокупностью неравенств и решите ее	

§ 40. Плоскость. Перпендикулярные прямые и отрезки

Простые вопросы
Интерпретационные (объясняющие) вопросы
interpretationale (collination) longoeli
Творческие вопросы
Оценочные вопросы
Практические вопросы
Уточняющие вопросы


§ 41. Параллельные прямые и отрезки

Простые вопросы
Интерпретационные (объясняющие) вопросы
Творческие вопросы
0
Оценочные вопросы
Практические вопросы
Уточняющие вопросы

§ 42. Координатная плоскость. Прямоугольная система координат

Простые вопросы
Интерпретационные (объясняющие) вопросы
интерпретиционные (обысняющие) вопросы
Творческие вопросы
Оценочные вопросы
Практические вопросы
iipuvin ioomio bonpoobi
Уточняющие вопросы

§ 43. Центральная и осевая симметрии

§ 44. Расположение фигуры в пространстве. Изображение пространственных фигур

Вопросы	Верю + Не верю -	Вывод
1. Верите ли вы, что можно изобразить на плоскости куб так, чтобы все его ребра были видимыми?		
2. Верите ли вы, что можно изобразить на плоскости шар?		
3. Верите ли вы, что при изображении пространственных фигур на плоскости видимые линии изображают сплошной линией?		
4. Верите ли вы, что при изображении пространственных фигур на плоскости невидимые линии изображают пунктиром?		
5. Верите ли вы, что при изображении шара сначала рисуют окружность?		

§ 45. Понятие вектора

Простые вопросы	
Интерпретационные (объясняющие) вопросы	
Творческие вопросы	
Оценочные вопросы	
Практические вопросы	
<u> </u>	
Уточняющие вопросы	
e roanmouthe poutpoen	

§ 46. Статистические данные и их характеристики

Утверждения	Согласен	Не согласен	Вывод
В повседневной жизни мы часто слышим: средний рост, средняя урожайность, средняя зарплата и т. п.			
Если рост девочек равен 1,4 м, 1,2 м, 1,3 м, 1,1 м, 1,5 м, то их средний рост равен $(1,4+1,2+1,3+1,1+1,5):5=1,3$ (м)			
Средним арифметическим нескольких чисел или величин называется значение частного от деления значения их суммы на число слагаемых			
Среднее арифметическое чисел 3; 8; 9; 5; 7; 4 равно 6			
Наибольшее значение ряда данных 3; 8; 9; 5; 7; 4 равно 9			
Наименьшее значение ряда данных 3; 8; 9; 5; 7; 4 равно 3			
$oxed{ \begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Мода, т. е. наиболее часто повторяющееся число в ряду данных 3; 8; 9; 5; 7; 3; 4, равна 3			
В ряду данных 3; 4; 9; 5; 7; 3; 4 две моды			
В ряду данных 3; 4; 9; 5; 7 нет моды			
Медиана, т. е. число, расположенное в середине ряда данных 3; 4; 6; 7; 9, записанных в порядке возрастания или убывания, равна 6			
Медиана ряда данных 4; 7; 3; 4; 9 равна 3			
Медиана ряда данных 9; 7; 6; 4; 4; 3, записанных в порядке возрастания или убывания, равна $(4+6)$: $2=5$			
Медиана ряда данных 4; 7; 3; 3; 4; 9 равна 3			

§ 47. Решение задач на нахождение средней скорости движения. Решение комбинаторных задач методом перебора

Вопросы	"До"	"После"	Вывод
	Я думаю, что …		Я прав (не прав), так как
Верно ли, что средняя скорость движения на двух участках равна среднему арифметическому двух скоростей?			
Как вычислить среднюю скорость движения на трех участ- ках пути?			

Карточка 1

Задание 1	Ответы
Составьте четырехзначные числа, у которых все цифры разные, используя цифры 5, 7, 2, 1	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	
Задание 2	
Составьте трехзначные числа, используя цифры 7, 2, 1	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	

Задание 1	Ответы
Составьте четырехзначные числа, у которых все цифры разные, используя цифры	
3, 6, 5, 2	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	
Задание 2	
Составьте трехзначные числа, используя цифры 4, 7, 8	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	

Карточка 3

Задание 1	Ответы
Составьте четырехзначные числа, у которых все цифры разные, используя цифры 9, 7, 8, 4	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	
Задание 2	
Составьте трехзначные числа, используя цифры 4, 2, 7	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	

Задание 1	Ответы
Составьте четырехзначные числа, у которых все цифры разные, используя цифры 6, 8, 3, 2	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	
Задание 2	
Составьте трехзначные числа, используя цифры 8, 3, 2	
Сколько таких чисел получилось?	
Как вы рассуждали при составлении чисел, чтобы не пропустить ни одного числа?	

§ 48. Способы задания зависимостей между величинами

Утверждения	Согласен	Не согласен	Вывод
Увеличение цены при покупке одного и того же количества товара ведет к увеличению стоимости			
Уменьшение цены при покупке одного и того же количества товара ведет к уменьшению стоимости			
При покупке одного и того же количества товара при изменении цены стоимость является зависимой величиной, а цена — независимой			
Стоимость может быть как зависимой величиной, так и независимой			
Зависимость стоимости от цены можно задать с помощью формулы: $C = \mathbf{q} \cdot \mathbf{k}$			
Зависимость стоимости от цены можно задать с помощью таблицы. Например,			
Цена 200 тг/л 240 тг/л 210 тг/л Стоимость 400 тг/л 480 тг/л 420 тг/л			
Зависимость стоимости от цены можно задать с помощью графика. Например, стоимость			

§ 49. Исследование зависимостей между величинами с использованием графиков реальных процессов

"V" — уже знал	" + " — новое	" – " — думал иначе	"?"— не понял, есть вопросы
53443		1111111111	corp Bonpoon

§ 50. Прямая пропорциональность и ее график

Карточка 1

Задание 1	Ответы
Почему являются прямо пропорциональными зависимости:	
стоимости товара от его цены при одном и том же количестве	
площади прямоугольника от его ширины при одной и той же длине	
массы урожая от урожайности с одного и того же поля?	
Задание 2	
Как по описанию записали формулу прямой пропорциональности $y = kx$, где $k \neq 0$:	
стоимости y за k предметов по цене x	
площади y прямоугольника, если его длина k , ширина x	
массы урожая y , собранного с поля площадью k при урожайности x ?	

Задание 1	Ответы
Почему являются прямо пропорциональными зависимости:	
расстояния, пройденного за одно и то же время, от скорости движения	
общей массы одинаковых ящиков от их количества	
выполненной работы за одно и то же время от производительности труда?	
Задание 2	
Как по описанию записали формулу прямой пропорциональности $y=kx$, где $k\neq 0$:	
расстояния y , пройденного за время k , при скорости движения x	
общей массы y , если масса одного ящика k , количество ящиков x	
выполненной работы y за время k при производительности труда x ?	

Карточка 3

Задание 1	Ответы
Почему являются прямо пропорциональными зависимости:	
стоимости товара от его количества при одной и той же цене	
площади прямоугольника от его длины при одной и той же ширине	
массы урожая от размера поля при одной и той же урожайности?	
Задание 2	
Как по описанию записали формулу прямой пропорциональности $y=kx$, где $k\neq 0$:	
стоимости y по цене k за x предметов	
площади y прямоугольника, если его ширина k , длина x	
массы урожая y при урожайности k , собранного с поля площадью x ?	

Карточка 4

Задание 1	Ответы
Почему являются прямо пропорциональными зависимости:	
расстояния от времени, пройденного с одной и той же скоростью движения	
общей массы от массы одного ящика при одинаковом количестве	
выполненной работы от времени при одной и той же производительности труда?	
Задание 2	
Как по описанию записали формулу прямой пропорциональности $y=kx$, где $k\neq 0$:	
расстояния y , пройденного со скоростью k , за время x	
общей массы y , если количество ящиков k , масса одного ящика x	
выполненной работы y при производительности труда k за время x ?	

§ 51. Линейное уравнение с двумя переменными

Вопросы	"До"	"После"	Вывод
	Я думаю, что		Я прав (не прав), так как
Что является решением линейного уравнения с двумя переменными?			
Какая пара чисел является решением линейного уравнения с двумя переменными?			
Что значит решить линейное урав- нение с двумя переменными?			
Какие линейные уравнения с двумя переменными называются равно- сильными?			
Получится ли равносильное уравнение, если в линейном уравнении с двумя переменными перенести слагаемые из одной части уравнения в другую?			
Получится ли равносильное уравнение, если обе части линейного уравнения с двумя переменными умножить или разделить на одно и то же, не равное нулю, число?			

§ 52. Системы линейных уравнений с двумя переменными

Вопросы	"До"	"После"	Вывод
	Я думаю, что		Я прав (не прав), так как
В каком случае речь идет о системе двух уравнений с двумя переменными?			
Что является решением системы двух уравнений с двумя переменными?			
Какая пара чисел является решением системы двух уравнений с двумя переменными?			
Что значит решить систему двух уравнений с двумя переменными?			
Какие системы двух уравнений с двумя переменными называются равносильными?			

§ 53. Решение систем линейных уравнений с двумя переменными способом сложения

Карточка 1	Ответы
Для решения системы $\begin{cases} 2x + y - 1 = 0, \\ 3x - y + 6 = 0 \end{cases}$	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом сложения
Какое преобразование с одним из уравнений системы $\begin{cases} 5x + 2y - 1 = 0, \\ 5x - y + 8 = 0 \end{cases}$ полнить, чтобы можно было применить	
способ сложения?	
Решите систему $\begin{cases} 5x + 2y - 1 = 0, \\ 5x - y + 8 = 0 \end{cases}$ способом сложения	
Какое преобразование с уравнениями	
системы $\begin{cases} 2x + 4y - 8 = 0, \\ 5x - 3y - 7 = 0 \end{cases}$ надо выпол-	
нить, чтобы можно было применить способ сложения?	
Решите систему $\begin{cases} 2x + 4y - 8 = 0, \\ 5x - 3y - 7 = 0 \end{cases}$ способом сложения	
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом сложения?	

Карточка 2	Ответы
Для решения системы $\begin{cases} 4x + 7y - 4 = 0, \\ -3x - 7y + 3 = 0 \end{cases}$	
Будет ли полученное уравнение равно- сильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный спо- соб решения системы двух линейных уравнений с двумя переменными?	Способом сложения
Какое преобразование с одним из уравнений системы $\begin{cases} 4x + 10y - 78 = 0, \\ 4x + 9y - 73 = 0 \end{cases}$ надо выполнить, чтобы можно было применить способ сложения?	
Решите систему $\begin{cases} 4x + 10y - 78 = 0, \\ 4x + 9y - 73 = 0 \end{cases}$	
Какое преобразование с уравнениями $\begin{cases} -3x + 4y - 14 = 0, \\ 7x - 3y + 20 = 0 \end{cases}$ надо вы-	
полнить, чтобы можно было применить способ сложения?	
Решите систему $\begin{cases} -3x + 4y - 14 = 0, \\ 7x - 3y + 20 = 0 \end{cases}$	
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом сложения?	

Карточка 3	Ответы
Для решения системы $\begin{cases} 7x + 9y - 5 = 0, \\ 3x - 9y - 15 = 0 \end{cases}$	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный спо- соб решения системы двух линейных уравнений с двумя переменными?	Способом сложения
Какое преобразование с одним из уравнений системы $\begin{cases} 13x + 2,5y + 13 = 0,\\ 13x - 17y + 13 = 0 \end{cases}$ надо выполнить, чтобы можно было применить способ сложения?	
Решите систему $\begin{cases} 13x + 2,5y + 13 = 0,\\ 13x - 17y + 13 = 0 \end{cases}$ способом сложения	
Какое преобразование с уравнениями системы $\begin{cases} 9x + 11y - 60 = 0, \\ 4x - 6y + 6 = 0 \end{cases}$ полнить, чтобы можно было приме-	
нить способ сложения?	
Решите систему $\begin{cases} 9x + 11y - 60 = 0, \\ 4x - 6y + 6 = 0 \end{cases}$	
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом сложения?	

Карточка 4	Ответы
Для решения системы $\begin{cases} 6x + 8y - 48 = 0, \\ 5x - 8y + 4 = 0 \end{cases}$	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом сложения
Какое преобразование с одним из уравнений системы $ \begin{cases} -2x+12y-6=0,\\ -2x+13y-7=0 \end{cases} $ надо выполнить, чтобы можно было	
применить способ сложения?	
Какое преобразование с уравнениями системы $\begin{cases} 2x + 4y - 18 = 0, \\ 3x - 7y - 1 = 0 \end{cases}$ надо выполнить, чтобы можно было применить способ сложения?	
Решите систему $\begin{cases} 2x + 4y - 18 = 0, \\ 3x - 7y - 1 = 0 \end{cases}$ спо-	
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом сложения?	

§ 54. Решение систем линейных уравнений с двумя переменными способом подстановки

Карточка 1	Ответы
Для решения системы $\begin{cases} 2x+y-1=0,\\ 3x+7y-18=0 \end{cases}$ выразите переменную y через x из первого уравнения. Подставьте во второе уравнение вместо y выражение из полученного равенства	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом подстановки
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом подстановки?	

Карточка 2	Ответы
Для решения системы $\begin{cases} 4x + y - 4 = 0, \\ -3x - 7y + 3 = 0 \end{cases}$ сначала выразите переменную y через x из первого уравнения. Подставьте во второе уравнение вместо y выражение из полученного равенства	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом подстановки
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом подстановки?	

Карточка 3	Ответы
Для решения системы $\begin{cases} 7x + y - 13 = 0, \\ 3x - 9y - 15 = 0 \end{cases}$ сначала выразите переменную y через x из первого уравнения. Подставьте во второе уравнение вместо y выражение из полученного равенства	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом подстановки
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом подстановки?	

Карточка 4	Ответы
Для решения системы $\begin{cases} 6x+y-27=0,\\ 5x-8y+4=0 \end{cases}$ сначала выразите переменную y через x из первого уравнения. Подставьте во второе уравнение вместо y выражение из полученного равенства	
Будет ли полученное уравнение равносильно данным уравнениям?	
Решите полученное уравнение	
Как найти другое неизвестное? Найдите его	
Запишите решение системы	
Как называется использованный способ решения системы двух линейных уравнений с двумя переменными?	Способом подстановки
Что нужно сделать, чтобы решить систему двух линейных уравнений с двумя переменными способом подстановки?	

ТЕСТ ДЛЯ ФОРМАТИВНОГО ОЦЕНИВАНИЯ

§ 1. Отношение двух чисел. Процентное отношение двух чисел

- 1. Отношением двух чисел называется их:
 - 1) сумма;
 - 2) частное;
 - 3) разность;
 - 4) деление;
 - 5) произведение.
- 2. Отношение двух чисел можно записать только в виде:
 - 1) частного;
 - 2) десятичной дроби;
 - 3) обыкновенной дроби;
 - 4) частного и десятичной дроби;
 - 5) частного и обыкновенной дроби.
- 3. Отношение чисел 5: 7 показывает:
 - 1) во сколько раз число 5 меньше числа 7;
 - 2) какую часть от числа 7 составляет число 5.
- 4. Отношение чисел 7: 5 показывает:
 - 1) во сколько раз число 7 больше числа 5;
 - 2) какую часть от числа 7 составляет число 5.
- 5. Неверно, что:
 - 1) отношение $a \kappa b$ это частное от деления a на b;
 - 2) если a > b, то отношение a : b показывает, во сколько раз a больше b;
 - 3) если a < b, то отношение a : b показывает, во сколько раз a меньше b;
- 4) если a < b, то отношение a : b показывает, какую часть a составляет от b;
- 5) процентное отношение a и b это отношение a : b, выраженное в процентах и равное $(a:b)\cdot 100$.

§ 2. Пропорция. Основное свойство пропорции

Дополнить:

- 1. Верное равенство двух или нескольких отношений называется _____.
- 2. Пропорцию: "Отношение a к b равно отношению c к d" можно записать в виде: ____ или ____.
 - 3. Решением уравнения $\frac{x}{1000} = \frac{1}{125}$ является число _____.

- 4. Равенство $\frac{2}{3} = \frac{18}{27}$ пропорцией:
- 1) является;
- 2) не является.
- 5. Если a:b=c:d пропорция, то верно равенство:
 - 1) $a \cdot c = b \cdot d$;
 - 2) $a \cdot d = b \cdot c$;
 - 3) $a \cdot b = c \cdot d$.
- 6. Из пропорции $\frac{a}{b} = \frac{c}{d}$ можно получить пропорцию:

 - 1) $\frac{a}{d} = \frac{c}{b}$; 2) $\frac{d}{a} = \frac{c}{b}$;
- 3) $\frac{a}{c} = \frac{b}{d}$.

§ 3. Прямо пропорциональная зависимость. Обратно пропорциональная зависимость

- 1. *Прямо пропорциональными величинами* называются переменные величины *у* и *x*, связь между которыми можно выразить формулой:
 - 1) y = kx + b, где k и b некоторые числа;
 - 2) y = kx, где k некоторое число;
 - 3) y = kx, где $k \neq 0$;
 - 4) $y = \frac{k}{x}$, где $k \neq 0$;
 - 5) $y = \frac{k}{r}$, где k некоторое число.
- 2. Обратно пропорциональными величинами называются переменные величины у и х, связь между которыми можно выразить формулой:
 - 1) y = kx + b, где k и b некоторые числа;
 - 2) y = kx, где k некоторое число;
 - 3) y = kx, где $k \neq 0$;
 - 4) $y = \frac{k}{r}$, где $k \neq 0$;
 - 5) $y = \frac{k}{r}$, где k некоторое число.
- 3. Свойство прямо пропорциональных величин: при увеличении одной величины в несколько раз другая величина во столько же раз:
 - 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется.
- 4. Свойство прямо пропорциональных величин: при уменьшении одной величины в несколько раз другая величина во столько же раз:
 - 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется.
- 5. Свойство обратно пропорциональных величин: при увеличении одной величины в несколько раз другая величина во столько же раз:
 - 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется.
- 6. Свойство обратно пропорциональных величин: при уменьшении одной величины в несколько раз другая величина во столько же раз:
 - 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется.

§ 4. Решение задач с помощью пропорций

Обвести кружком номер правильного ответа:

1. Найти 7% от числа 29 можно с помощью пропорции:

1) $\frac{x}{7} = \frac{29}{100}$;	2) $\frac{x}{100} = \frac{29}{7}$;	3) $\frac{x}{7} = \frac{100}{29}$.
2. Найти число, 7% ког	горого равны 29, можно с	помощью пропорции:
1 100	$2) \ \frac{x}{100} = \frac{29}{7};$ ь в отношении $4:2$, то по	3) $\frac{x}{7} = \frac{100}{29}$.
1) 20 кг и 10 кг;		71y 1011 1110 0 211
,	ь на части, прямо пропорц	иональные числам 4;
1) 20 кг и 10 кг;	2) 10 кг и 20 кг.	
5. Если 30 кг разделит 4; 2, то получатся массы:	ь на части, обратно пропо	рциональные числам
1) 20 кг и 10 кг;	2) 10 кг и 20 кг.	
	§ 5. Масштаб	
ющему расстоянию в дейся 2. Если на карте написалена в масштабе	ано: М 1 : 1000, то говорят сано: М 20 : 1, то говорят штабом М 1 : 1000 расстоя км. штабом М 200 : 1 расстоя	г, что карта подготов- , что схема сделана в яние равно 2 м, то на
§ 6. Длина окру	жности. Площадь круга. І	Пар. Сфера
Дополнить: 1. Формула длины окру	ужности, у которой длина	радиуса равна R , это
Формула длины окру	ужности, у которой длина	диаметра равна d , это
3. Формула площади н	круга, у которого длина ј	радиуса равна $R,$ это
	руга, у которого длина д	иаметра равна d , это
5. Поверхность шара наз	вывается	

84

§ 7. Положительные и отрицательные числа. Координатная прямая

Обвести кружком номер правильного ответа:

- 1. Число 0 является:
 - 1) положительным;
- 2) отрицательным;
- 3) ни положительным, ни отрицательным.
- 2. Число 10 является:
 - 1) положительным;
- 2) отрицательным;
- 3) ни положительным, ни отрицательным.
- 3. Числа, которые на числовой прямой расположены левее числа 0, называются:
 - 1) положительными;
- 2) отрицательными.
- 4. Числовая ось это прямая, на которой имеются:
 - 1) начало отсчета;
 - 2) начало отсчета, единичный отрезок;
 - 3) начало отсчета, единичный отрезок, числа;
 - 4) начало отсчета, единичный отрезок, отрицательное направление;
 - 5) начало отсчета, единичный отрезок, положительное направление.

§ 8. Противоположные числа. Целые числа. Рациональные числа

Обвести кружком номер правильного ответа:

- 1. Противоположными являются числа:
 - 1) 234 и 432:
- 2) 234 и -432;
- 3) 234 и -234.
- 2. Множество целых чисел состоит из чисел только:
 - 1) натуральных;
 - 2) натуральных и нуля;
 - 3) положительных, отрицательных и нуля;
 - 4) натуральных, нуля и противоположных натуральным;
 - 5) натуральных, нуля, противоположных натуральным и дробных.
- 3. Множество рациональных чисел состоит из чисел только:
 - 1) целых и натуральных;
 - 2) целых и положительных дробных;
 - 3) дробных положительных и отрицательных и нуля;
 - 4) дробных положительных и отрицательных и целых;
 - 5) дробных положительных и отрицательных и натуральных.
- 4. Утверждение "Множество натуральных чисел и множество целых чисел являются подмножествами множества рациональных чисел":
 - 1) верно;
 - 2) не верно.

Дополнить:

5. Для любого рационального числа b верно равенство: -(-b) =______

§ 9. Модуль числа и его геометрический смысл

Обвести кружком номер правильного ответа:

- 1. Модуль числа b показывает расстояние:
 - 1) до точки B(b);
 - 2) от точки A(-b) до точки B(b);
 - 3) от начала отсчета до точки B(b);
- 2. Абсолютное значение числа b показывает расстояние:
 - 1) до точки B(b);
 - 2) от точки A(-b) до точки B(b);
 - 3) от начала отсчета до точки B(b);
- 3. Если b < 0, то |b| равен:
 - 1) b;

- 2) -b.
- 4. Если b > 0, то |-b| равен:
 - 1) b

- 2) -b.
- 5. Если b < 0, то |-b| равен:
 - 1) *b*;

2) -b.

§ 10. Сравнение рациональных чисел

Обвести кружком номер правильного ответа:

1. Предложение: "Число b положительное" записывают с помощью неравенства:

1) b > 0;

3) $b \ge 0$;

2) b < 0;

4) $b \le 0$.

2. Предложение: "Число b неположительное" записывают с помощью неравенства:

1) b > 0;

3) $b \ge 0$;

2) b < 0:

4) $b \le 0$.

3. Предложение: "Число b отрицательное" записывают с помощью неравенства:

1) b > 0;

3) $b \ge 0$;

2) b < 0;

4) $b \le 0$.

4. Предложение: "Число b неотрицательное" записывают с помощью неравенства:

1) b > 0;

3) $b \ge 0$;

2) b < 0:

4) $b \le 0$.

5. Если число a положительное, а число b отрицательное, то верно неравенство:

1) a < b;

3) a > b;

2) $a \le b$;

4) $b \ge a$.

§ 11. Сложение рациональных чисел с помощью координатной прямой

Дополнить:

- 1. Значение суммы двух противоположных рациональных чисел равно
- 2. Значение суммы 0.7 + (-0.7) равно _____.
- 3. Значение суммы $-\frac{7}{8} + 0$ равно _____.
- 4. Для любого рационального числа b верно равенство $b + (-b) = (-b) + b = ______.$
 - 5. Для любого рационального числа b верно равенство b+0=0+b=____.

§ 12. Сложение отрицательных рациональных чисел

Обвести кружком номер правильного ответа:

- 1. При сложении двух отрицательных рациональных чисел получится число:
 - 1) всегда положительное;
 - 2) всегда отрицательное;
- 3) в некоторых случаях положительное, в некоторых отрицательное.
- **2.** При сложении двух отрицательных рациональных чисел получиться число 0:
 - 1) может;
 - 2) не может.

- 3. Значение суммы $\left(-\frac{7}{8}\right) + \left(-\frac{1}{8}\right)$ равно _____.
- 4. Значение суммы $(-10,2) + (-\frac{4}{5})$ равно _____.
- 5. Значение суммы $(-0,4) + (-\frac{3}{5})$ равно _____.

§ 13. Сложение рациональных чисел с разными знаками

Обвести кружком номер правильного ответа:

- 1. При сложении двух рациональных чисел с разными знаками получится число:
 - 1) всегда положительное;
 - 2) всегда отрицательное;
- 3) в некоторых случаях положительное, в некоторых отрицательное.
- 2. При сложении двух рациональных чисел с разными знаками получиться число 0:
 - 1) может;
 - 2) не может.

Дополнить:

- 3. Значение суммы $(-\frac{5}{7}) + \frac{1}{7}$ равно _____.
- 4. Значение суммы $(-\frac{1}{7}) + \frac{5}{7}$ равно _____.
- 5. Значение суммы $(-\frac{5}{7}) + \frac{5}{7}$ равно _____.

§ 14. Свойства сложения рациональных чисел

- 1. Значение суммы $-\frac{5}{7} + (\frac{5}{7} + (-8))$ равно _____.
- 2. Значение суммы $-5 + (\frac{1}{7} + 5)$ равно _____.
- 3. Значение суммы $-\frac{5}{7} + (-\frac{1}{7} + \frac{5}{7})$ равно _____.
- 4. Значение суммы $-\frac{5}{7} + (-\frac{4}{7}) + (-\frac{5}{7})$ равно _____.
- 5. Значение суммы $\frac{5}{7} + (-\frac{4}{7}) + (-\frac{5}{7})$ равно _____.

§ 15. Вычитание рациональных чисел

1. Разность a-b можно заменить суммой a+ ___.

Обвести кружком номер правильного ответа:

- 2. Если уменьшаемое больше вычитаемого, то значение разности рациональных чисел является число:
 - 1) положительное;
 - 2) отрицательное;
 - 3) нуль.
- 3. Если уменьшаемое меньше вычитаемого, то значение разности рациональных чисел является число:
 - 1) положительное;
 - 2) отрицательное;
 - 3) нуль.

Дополнить:

- 4. Значение выражения 5 10 равно _____.
- **5.** Значение выражения 5 10 равно _____.

§ 16. Сложение и вычитание рациональных чисел

Дополнить:

- 1. Значение выражения -5 + 38 75 равно _____.
- 2. Значение выражения 13 74 26 равно .
- 3. Значение выражения 17 56 + 17 равно ____.
- 4. Значение выражения $\frac{4}{25} 0.04 \frac{3}{25}$ равно ____.
- 5. Значение выражения $245\frac{4}{25} + 10 245$ равно ____.

§ 17. Расстояние между точками координатной прямой

- 1. Расстояние между точками C(c) и E(e) координатной прямой можно найти по формуле l=_____.
 - 2. Расстояние между точками C(34) и E(4) координатной прямой равно
- 3. Расстояние между точками C(-15) и E(-5) координатной прямой равно _____.
 - 4. Расстояние между точками C(-9) и E(16) координатной прямой равно
 - 5. Расстояние между точками C(70) и E(-2) координатной прямой равно

§ 18. Умножение рациональных чисел

Обвести кружком номер правильного ответа:

- 1. Значение произведения отрицательного числа на положительное есть число:
 - 1) отрицательное;
 - 2) положительное.
- 2. Значение произведения положительного числа на отрицательное есть число:
 - 1) отрицательное;
 - 2) положительное.
 - 3. Значение произведения двух отрицательных чисел есть число:
 - 1) отрицательное;
 - 2) положительное.

Дополнить:

- 4. Значение произведения $-4 \cdot 25$ равно .
- 5. Значение произведения 8 · (-125) равно _____.
- 6. Значение произведения $-4 \cdot (-0.75)$ равно _____.

§ 19. Переместительное и сочетательное свойства умножения рациональных чисел

Обвести кружком номер правильного ответа:

- 1. Переместительное свойство умножения записывают с помощью формулы:
 - 1) $a \cdot b = b \cdot a$;
 - 2) $(a \cdot b) \cdot c = (b \cdot a) \cdot c$;
 - 3) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
 - 4) $(a \cdot b) \cdot c = c \cdot (b \cdot a)$;
 - 5) $(a + b) \cdot c = a \cdot c + b \cdot c$.
 - 2. Сочетательное свойство умножения записывают с помощью формулы:
 - 1) $a \cdot b = b \cdot a$;
 - 2) $(a \cdot b) \cdot c = (b \cdot a) \cdot c$;
 - 3) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
 - 4) $(a \cdot b) \cdot c = c \cdot (b \cdot a)$;
 - 5) $(a + b) \cdot c = a \cdot c + b \cdot c$.

- 3. Значение произведения $(-73 \cdot \frac{1}{8}) \cdot 8$ равно _____.
- 4. Значение произведения $(-\frac{1}{9} \cdot 65) \cdot 9$ равно _____.
- 5. Значение произведения $-\frac{1}{8} \cdot (-1234) \cdot (-\frac{1}{125})$ равно _____.

§ 20. Деление рациональных чисел

0~				
Оовести	кружком	номер	правильного	ответа:

1) деления;

2) сложения;

3) вычитания;

1. Значение частного, полученного от деления отрицательного числа на положительное, есть число: 1) отрицательное; 2) положительное. 2. Значение частного, полученного от деления положительного числа на отрицательное, есть число: 1) отрицательное; 2) положительное. 3. Значение частного, полученного от деления двух отрицательных чисел, есть число: 1) отрицательное; 2) положительное. Дополнить: 4. Значение частного -25:3 равно десятичной дроби ______. 5. Значение частного 32: (-15) равно десятичной дроби _____. § 21. Арифметические действия с рациональными числами Обвести кружком номер правильного ответа: 1. Для нахождения значения выражения $736 - 92, 1 \cdot 7, 1^3 : (-84) + 267$ первым выполняется действие: 1) деления; 4) умножения; 2) сложения; 5) возведения в степень. 3) вычитания; 2. Для нахождения значения выражения $736 - 92, 1 \cdot 7, 1^3 : (-84) + 267$ вторым выполняется действие: 1) деления; 4) умножения; 2) сложения; 5) возведения в степень. 3) вычитания; 3. Для нахождения значения выражения $736 - 92, 1 \cdot 7, 1^3 : (-84) + 267$ третьим выполняется действие: 1) деления; 4) умножения; 5) возведения в степень. 2) сложения; 3) вычитания; 4. Для нахождения значения выражения $736 - 92, 1 \cdot 7, 1^3 : (-84) + 267$ четвертым выполняется действие: 4) умножения; 1) деления; 2) сложения; 5) возведения в степень. 3) вычитания; 5. Для нахождения значения выражения $736 - 92, 1 \cdot 7, 1^3 : (-84) + 267$ пятым выполняется действие:

4) умножения;

5) возведения в степень.

§ 22. Переменная

•
Дополнить:
1. Буква, вместо которой подставляют числа, называется
2. Число, которое подставляют вместо переменной, называется
3. Если значение числового выражения вычислить невозможно, то говорят, что это числовое выражение
4. Если при указанных значениях переменной можно найти значение
алгебраического выражения, то указанные значения переменных называются
5. Если при указанных значениях переменной алгебраическое выражение не имеет смысла, то указанные значения переменных называются
§ 23. Распределительное свойство умножения рациональных чисел. Раскрытие скобок
Обвести кружком номер правильного ответа:
1. При раскрытии скобок, перед которыми стоит знак минус, надо зна-
ки, стоящие перед слагаемыми в скобках:
1) оставить те же;
2) заменить на противоположные знаки.
2. При раскрытии скобок, перед которыми стоит знак плюс, надо знаки,
стоящие перед слагаемыми в скобках:
1) оставить те же;
2) заменить на противоположные знаки.
Дополнить:
3. Если в алгебраическом выражении $-(34+b-m)$ раскрыть скобки,
то получим выражение
4. Если в алгебраическом выражении $-0.25~(32+4b-2m)$ раскрыть
скобки, то получим выражение
5.~ Если в алгебраическом выражении $23a + 4ab - 2am$ вынести общий

множитель за скобки, то получим выражение _____.

§ 24. Коэффициент. Подобные слагаемые. Приведение подобных слагаемых

Дополнить:
1. Коэффициентом алгебраического выражения $32axc$ является число
2. Коэффициентом алгебраического выражения $-axc$ является число
3. Коэффициентом алгебраического выражения $a \cdot (-2x) \cdot 0, 3 \ c$ является
число
4. Если привести подобные слагаемые в алгебраическом выражении
x + (-2x) + 0.3c, то получим выражение
5. Если привести подобные слагаемые в выражении $0.3c - 2x + 0.3c + x$ то получим выражение
§ 25. Тождество. Тождественные преобразования выражений
Обвести кружком номер правильного ответа:
1. Выражения $0.3c - 2x + 0.3c + x$ и $0.6c - x$ тождественно равными:
1) являются;
2) не являются.
2. Выражения $-(34+b-m)$ и $-34+b-m$ тождественно равными:
1) являются;
2) не являются.
3. Равенство -0.25 $(32-4b+2m)=-8-b+0.5m$ тождеством:
1) является;
2) не является.
Дополнить:
4. Если выполнить тождественное преобразование выражения $2ac+4ab$ -
-2am, то получим выражение
5.~ Если выполнить тождественное преобразование выражения $2ac+4ab-6$
- 2ac, то получим выражение
§ 26. Решение текстовых задач
Дополнить:
1. Если цена предмета а тг/шт., то стоимость 16 шт. равна тг.
2. Если производительность станка b дет/ч, то за 8 ч будет изготовлено деталей.
3. Если ширина прямоугольника 5 см, а ширина на a см больше, то его
площадь равна () см ² .
4. Если друзья вышли навстречу друг другу со скоростью 0,8а км/ч и
a км/ч, то скорость их сближения равна км/ч.
5. Если турист 2 ч шел со скоростью 6 км/ч, а 3 ч со скоростью a км/ч
то он прошел () км.

§ 27. Числовые равенства и их свойства

Дополнить:

1. Если a = b — верное числовое равенство, то верно и числовое равенство a + c = b _____.

2. Если a = b — верное числовое равенство, то верно и числовое равенство $a \cdot c = b$ ______.

3. Если a = b и b = c — верные числовые равенства, то верно и числовое

4. Если a = b и c = d — верные числовые равенства, то верно и числовое равенство a + c = b _____.

5. Если a = b и c = d — верные числовые равенства, то верно и числовое равенство $a \cdot c = b$ _____.

§ 28. Решение уравнений

Дополнить:

1. Уравнение вида ax = b, где x — переменная (неизвестное число, которое нужно найти), a и b — некоторые числа, называется ______

Обвести кружком номер правильного ответа:

2. Если a=0, b=0, то решением (корнем) уравнения ax=b будет:

любое число;
 ∅;

3) $\frac{b}{a}$; 4) $\frac{a}{b}$; 5) 0.

3. Если a=0, b не равно нулю, то решением (корнем) уравнения ax = b будет:

1) любое число; 2) \varnothing ;

3) $\frac{b}{a}$; 4) $\frac{a}{b}$; 5) 0.

4. Если a не равно нулю, то решением (корнем) уравнения ax = b будет:

любое число;
 ∅;

3) $\frac{b}{a}$; 4) $\frac{a}{b}$;

5. Линейным уравнением с одной переменной является уравнение:

1) $\frac{x}{0} = 7$;

2) $\frac{9}{r} = 7;$ 3) $(x-7) \cdot (x+7) = 0.$

6. Равносильными являются уравнения: $x^2 - 49 = 0$ и:

1) x-7=0; 2) x+7=0; 3) $(x-7)\cdot(x+7)=0$.

§ 29. Линейное уравнение с одной переменной

Установить правильную последовательность:

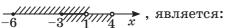
1 П		
1. При решении уравнений, содерж	кащих скооки и г	іодооные слагаемые,
сначала:		
🗆 переносят слагаемые, содержац		
ния (обычно в левую), а остальные о		
при этом изменяют их знаки на про		
□ по возможности упрощают урав	нение (раскрыван	от скобки, приводят
подобные слагаемые);		
□ делают проверку;		
□ находят корень уравнения;		
🗆 приводят подобные слагаемые.		
Дополнить:		
2. Решением уравнения $x + 17 =$	21 - (2x + 13) яв	вляется число
3. Решением уравнения $(24 - x) +$		
4. Решением уравнения $(11x - 10)$		
	· /	,
5. Решением уравнения $(14x - 21)$):7=3-2x явл	іяется число
§ 30. Линейное уравнение	е, содержащее пе	ременную
под знако	ом модуля	
Обвести кружком номер правилы	ного ответа:	
1. Число корней уравнения $ x =$	a, где $a=0$, равн	ю:
1) 1; 2) 2; 3) 0.		
2. Число корней уравнения $ x =a$	a, где $a < 0$, равн	0:
1) 1; 2) 2; 3) 0.		
3. Число корней уравнения $ x = a$	a, где $a>0$, равн	0:
1) 1; 2) 2; 3) 0.		
4. Решением уравнения $ x =-3$ я	вляется:	
1) Ø; 2) 0; 3) -3		5) {-3; 3}.
5. Решением уравнения $ -x =3$ я		-, (-, -, -
1) \varnothing ; 2) 0; 3) -3	• 4) 3•	5) {-3: 3}
1) ~, 2) 0, 0	, 1,0,	3) (3, 3).
§ 31. Решение текстовых з	адач с помощью	уравнений
Ответить на вопросы по тексту за	ілачи:	
За 50 кг сданного в приемный пун	• •	кг макулатуры полу-
чили 2350 тг. Найдите цену картона	-	
на 5 тг/кг дороже.		, , , , , , , , , , , , , , , , , , ,
Обвести кружком номер правилы	ного ответа:	
1. Для решения задачи с помощью		обно принять только
1) цену картона; 2) цену макулату		
2. Для решения задачи можно сос		
3. Решением задачи являются цен	ы TT/ К	тг/кг.

§ 32. Числовые неравенства и их свойства

Обвести кружком номер правильного ответа:

- 1. Неравенства вида a < b и a > b называют:
 - 1) строгими;
 - 2) нестрогими;
 - 3) двойными неравенствами.
- 2. Неравенства вида $a \le b$ и $a \ge b$ называют:
 - 1) строгими;
 - 2) нестрогими;
 - 3) двойными неравенствами.
- 3. Неравенства вида $a \le x \le b$, $a < x \le b$, $a \le x < b$ называют:
 - 1) строгими;
 - 2) нестрогими;
 - 3) двойными неравенствами.

- 4. Если a < b верное числовое неравенство, то верно и числовое неравенство a + c < b ______.
- 5. Если a < b верное числовое неравенство и c > 0, то верно и числовое неравенство $a \cdot c$ ______ $b \cdot c$.
- 6. Если a < b верное числовое неравенство и c < 0, то верно и числовое неравенство $a \cdot c$ ______ $b \cdot c$.
- 7. Если a < b и b < c верные числовые неравенства, то верно и числовое неравенство a < _____.
- 8. Если a < b и c < d верные числовые неравенства, то верно и числовое равенство a + c < b ______.
- 9. Если a>b>0 и c>d>0 верные числовые неравенства, то верно и числовое неравенство $a\cdot c>b$ ______ .


§ 33. Числовые промежутки

- 1. Числовой промежуток [1; $+\infty$) является:
 - 1) числовым лучом;
 - 2) числовым отрезком;
 - 3) числовым интервалом;
 - 4) открытым числовым лучом;
 - 5) числовым полуинтервалом.
- 2. Числовой промежуток (1; $+\infty$) является:
 - 1) числовым лучом;
 - 2) числовым отрезком;
 - 3) числовым интервалом;
 - 4) открытым числовым лучом;
 - 5) числовым полуинтервалом.
- 3. Числовой промежуток [1; 8] является:
 - 1) числовым лучом;
 - 2) числовым отрезком;
 - 3) числовым интервалом;
 - 4) открытым числовым лучом;
 - 5) числовым полуинтервалом.
- 4. Числовой промежуток (1; 8) является:
 - 1) числовым лучом;
 - 2) числовым отрезком;
 - 3) числовым интервалом;
 - 4) открытым числовым лучом;
 - 5) числовым полуинтервалом.
- 5. Числовой промежуток [1; 8) является:
 - 1) числовым лучом;
 - 2) числовым отрезком;
 - 3) числовым интервалом;
 - 4) открытым числовым лучом;
 - 5) числовым полуинтервалом.

§ 34. Объединение и пересечение числовых промежутков

Обвести кружком номер правильного ответа:

- 1. Объединением числовых промежутков называется числовой промежуток, состоящий из чисел, которые принадлежат:
 - 1) хотя бы одному из этих числовых промежутков;
 - 2) одновременно каждому из этих числовых промежутков.
- 2. *Пересечением числовых промежутков* называется числовой промежуток, состоящий из чисел, которые принадлежат:
 - 1) хотя бы одному из этих числовых промежутков;
 - 2) одновременно каждому из этих числовых промежутков.
 - 3. Объединением числовых промежутков, изображенных на рисунке

- 1) [-6; 4);
- 2) (-6; 4];
- 3) [-3; 1);
- 4) (-3; 1];
- 5) [-6; 4].
- 4. Пересечением числовых промежутков, изображенных на рисунке

$$-\frac{7}{6}$$
 $-\frac{3}{7}$ $+\frac{1}{4}$ $+\frac{1}{4}$

- 1) [-6; 4);
- 2) (-6; 4];
- 3) [-3; 1);
- 4) (-3; 1];
- 5) [-6; 4].

Дополнить:

5. Пересечением числовых промежутков, изображенных на рисунке $\frac{-1}{-5}$, является ____.

§ 35. Линейные неравенства с одной переменной

-				
Лα	П	TIL	TUT	ГЪ:

- 1. Неравенства вида ax < b, ax > b, $ax \ge b$, $ax \le b$, в которых x переменная (неизвестное число, которое нужно найти), a и b — некоторые числа, называются _____ ____
- 2. Значение переменной (число), при подстановке которого в неравенство с одной переменной получается верное числовое неравенство, называется

Обвести кружком номер правильного ответа:

- 3. Число -9 решением неравенства $x \ge -5$:
 - 1) является:
- 2) не является.
- 4. Линейным неравенством с одной переменной является неравенство:
 - 1) $\frac{x}{9} > 7;$ 2) $\frac{9}{x} > 7;$
- $3)(x-7)\cdot(x+7)>0.$
- 5. Равносильными являются неравенства: $x^2 49 > 0$ и:
- 1) x-7>0; 2) x+7>0; 3) $(x-7)\cdot(x+7)>0$.

§ 36. Решение линейных неравенств с одной переменной

Обвести кружком номер правильного ответа:

- 1. Решением неравенства $0 \cdot x > 5$ является:
 - 1) \emptyset ;

4) $(0; +\infty);$

2) $(-\infty; +\infty);$

5) (5; $+\infty$).

- 3) $(-\infty; 0)$;
- 2. Решением неравенства $0 \cdot x > -5$ является:
 - $1) \varnothing;$

4) $(0; +\infty);$

2) $(-\infty; +\infty);$

5) (5: $+\infty$).

- 3) $(-\infty; 0);$
- 3. Решением неравенства $0 \cdot x < 5$ является:
 - 1) Ø;

4) $(0; +\infty);$

2) $(-\infty; +\infty);$

5) (5: $+\infty$).

- 3) $(-\infty; 0);$
- 4. Решением неравенства $0 \cdot x < -5$ является:
 - 1) Ø;

4) $(0; +\infty);$

2) $(-\infty; +\infty);$

5) (5: $+\infty$).

3) $(-\infty; 0);$

Дополнить:

5. Решением неравенства -6x - 29 > -27 + 4x является .

§ 37. Решение систем линейных неравенств с одной переменной

- 1. Решением системы неравенств $\begin{cases} x>-1, \\ x<4 \end{cases}$ является:
 - 1) $(-\infty; 1);$
 - 2) $(-\infty; -1);$
 - $3) \varnothing;$
 - 4) [-1; 4];
 - 5) (-1; 4).
- 2. Решением системы неравенств $\begin{cases} -x>-1, \\ x<4 \end{cases}$ является:
 - 1) $(-\infty; 1);$
 - 2) $(-\infty; -1);$
 - $3) \varnothing;$
 - 4) [-1; 4];
 - 5) (-1; 4).
- 3. Решением системы неравенств $\begin{cases} -x \leqslant 1, \\ x < -4 \end{cases}$ является:
 - 2) $(-\infty; -1);$
 - $3) \varnothing;$
 - 4) [-1; 4];
 - 5) (-1; 4).
- 4. Решением системы неравенств $\begin{cases} -x \ge 1, \\ x \le 4 \end{cases}$ является:
 - 1) $(-\infty; 1);$
 - 2) $(-\infty; -1];$
 - $3) \varnothing;$
 - 4) (-1; 4);
 - 5) (-1; 4).
- 5. Решением системы неравенств $\begin{cases} 2x + 2 > 0, \\ 2 x > 2x 10 \end{cases}$ является:
 - 1) $(-\infty; 1);$
 - 2) $(-\infty; -1];$
 - $3) \varnothing;$
 - 4) (-1; 4];
 - 5) (-1; 4).

§ 38. Линейное неравенство, содержащее переменную под знаком модуля

Обвести кружком номер правильного ответа:

- 1. Неравенство $|x| \le b$, где b > 0 равносильно:
 - 1) совокупности неравенств $x \leq -b$ и $x \geq b$;
 - 2) совокупности неравенств x < -b и x > b;
 - 3) неравенству $-b \le x \le b$;
 - 4) неравенству -b < x < b.
- 2. Неравенство |x| < b, где b > 0, равносильно:
 - 1) совокупности неравенств $x \le -b$ и $x \ge b$;
 - 2) совокупности неравенств x < -b и x > b;
 - 3) неравенству $-b \le x \le b$;
 - 4) неравенству -b < x < b.
- 3. Неравенство $|x| \ge b$, где b > 0, равносильно:
 - 1) совокупности неравенств $x \le -b$ и $x \ge b$;
 - 2) совокупности неравенств x < -b и x > b;
 - 3) неравенству $-b \le x \le b$;
 - 4) неравенству -b < x < b.
- 4. Неравенство |x| > b, где b > 0, равносильно:
 - 1) совокупности неравенств $x \leq -b$ и $x \geq b$;
 - 2) совокупности неравенств x < -b и x > b;
 - 3) неравенству $-b \le x \le b$;
 - 4) неравенству -b < x < b.

Дополнить:

5. Неравенство |x| < b, где b > 0, равносильно системе неравенств ______.

§ 39. Решение линейных неравенств, содержащих переменную под знаком модуля

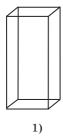
- 1. Решением неравенства |x| < a, где a < 0, является:
 - 1) 0;
- 2) Ø.
- 3) $(-\infty; +\infty)$.
- 2. Решением неравенства $|x| \le a$, где a < 0, является:
 - 1) 0;
- $2) \varnothing;$
- 3) $(-\infty; +\infty)$.
- 3. Решением неравенства $|x| \le 0$ является:
 - 1) 0;
- 2) Ø;
- 3) $(-\infty; +\infty)$.
- 4. Решением неравенства $|x|\geqslant a$, где a<0, является:
 - 1) 0:
- $2) \varnothing;$
- 3) $(-\infty; +\infty)$.
- 5. Решением неравенства |x| > a, где a < 0, является:
 - 1) 0;
- $2) \varnothing;$
- 3) $(-\infty; +\infty)$.

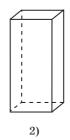
§ 40. Плоскость. Перпендикулярные прямые и отрезки

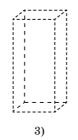
у 40. плоскость. перпендикулярные прямые и отрезки
Дополнить:
1. Две прямые, образующие при пересечении прямые углы, называются
2. Перпендикулярными отрезками называют отрезки, которые
Обвести кружком номер правильного ответа:
3. Всегда пересекаются:
1) перпендикулярные прямые;
2) перпендикулярные отрезки.
§ 41. Параллельные прямые и отрезки
Дополнить:
1. Две непересекающиеся прямые, лежащие в одной и той же плоскости, называются
2. Отрезки, лежащие на параллельных прямых, называются
Обвести кружком номер правильного ответа:
3. Если прямые a и b параллельны, то пишут:
1) $a \parallel b$; 2) $a \perp b$.
4. Если $a \parallel b$, то
1) $b \parallel a$; 2) $b \perp a$.
§ 42. Координатная плоскость.
Прямоугольная система координат
Дополнить:
1. Горизонтальная координатная прямая называется <i>осью</i> 2. Вертикальная координатная прямая называется <i>осью</i>
3. Плоскость, на которой имеется система координат, называется
4. Абсцисса и ордината называются
5. При записи координат точки надо строго соблюдать следующий по-
рядок: на первом месте всегда пишется, а на втором —
6. Если точка лежит на оси абсцисс, то равна нулю ее
7. Если точка лежит на оси ординат, то равна нулю ее
8. Оси координат разбивают плоскость на четыре части, которые на-
зываются

§ 43. Центральная и осевая симметрии

Дополнить:


1. Если расстояния от точки до концов отрезка равны, то эта точка на-
зывается
2. Если точка O является серединой отрезка AB (рис. 43), то точки A и
В называются
3. Центрально-симметричные фигуры между собой
4. Если отрезок, соединяющий точки A и B , перпендикулярен оси l и
расстояние от точки A до оси l равно расстоянию от точки B до оси l , то
эти точки называются


- 5. Если $AB \perp l$ и AO = OB, то точки A и B только:
 - 1) симметричны относительно точки O;
 - 2) симметричны относительно прямой l;
 - 3) симметричны относительно прямой l и точки O.


§ 44. Расположение фигуры в пространстве. Изображение пространственных фигур

Обвести кружком номер правильного ответа:

- 1. При изображении пространственных фигур на плоскости невидимые линии изображают:
 - 1) пунктиром;
 - 2) сплошной линией.
- 2. При изображении пространственных фигур на плоскости видимые линии изображают:
 - 1) пунктиром;
 - 2) сплошной линией.
- 3. Правильным изображением прямоугольного параллелепипеда является:

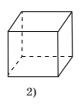
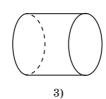




Рис. 44

4. Шар изображен на рисунке:

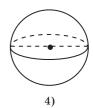
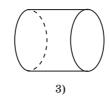
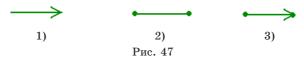



Рис. 45

5. Прямоугольный параллелепипед изображен на рисунке:



Рис. 46


§ 45. Понятие вектора

Дополнить:

- 1. Векторные величины характеризуются числом и _______

Обвести кружком номер правильного ответа:

3. Вектор изображен на рисунке:

§ 46. Статистические данные и их характеристики

Дополнить:

- 2. Наиболее часто повторяющееся число или величина в ряду данных называется:
 - 1) наибольшим значением ряда данных;
 - 2) наименьшим значением ряда данных;
 - 3) размахом;
 - 4) медианой;
 - 5) модой.
 - 3. Наибольшее из чисел ряда данных называется:
 - 1) наибольшим значением ряда данных;
 - 2) наименьшим значением ряда данных;
 - 3) размахом;
 - 4) медианой;
 - 5) модой.
 - 4. Наименьшее из чисел ряда данных называется:
 - 1) наибольшим значением ряда данных;
 - 2) наименьшим значением ряда данных;
 - 3) размахом;
 - 4) медианой;
 - модой.
- 5. Значение разности между наибольшим и наименьшим значением ряда данных называется:
 - 1) наибольшим значением ряда данных;
 - 2) наименьшим значением ряда данных;
 - 3) размахом;
 - 4) медианой;
 - 5) модой.

§ 47. Решение задач на нахождение средней скорости движения. Решение комбинаторных задач методом перебора

Дополнить:

- 1. Используя цифры 5 и 6, можно составить двузначных чисел ___ шт.
- 2. Используя цифры 5 и 6, можно составить трехзначных чисел ___ шт.
- 3. Если все цифры разные, то, используя цифры 1, 2 и 3, можно составить трехзначных чисел ___ шт.
- 4. Если все цифры разные, то, используя цифры 1, 2 и 0, можно составить трехзначных чисел ___ шт.
- 5. Используя цифры 1, 2 и 0, можно составить трехзначных чисел шт.

§ 48. Способы задания зависимостей между величинами

Обвести кружком номер правильного ответа:

- 1. Выполненная работа, найденная по различной производительности за 8 ч, является переменной величиной:
 - 1) зависимой;
 - 2) независимой.
- 2. Если выполненная работа найдена по различной производительности за 8 ч, то производительность является переменной величиной:
 - 1) зависимой;
 - 2) независимой.
- 3. Периметр квадрата, найденный по длине его стороны (табл. 27), является переменной величиной:
 - 1) зависимой;
 - 2) независимой.

Таблица 27

Длина стороны квадрата	3,4	4,5	5,6	6,7	7,8
Периметр квадрата					

- 4. Переменная величина y, зависящая от x по формуле y = kx, является переменной величиной:
 - 1) зависимой;
 - 2) независимой.
- 5. Множество точек координатной плоскости, у которых абсциссы равны значениям независимой переменной x, а ординаты соответствующим значениям зависимой переменной y, называется ______ зависимости между величинами.

§ 49. Исследование зависимостей между величинами использованием графиков реальных процессов

Рассмотрите рисунок 48 и ответьте на вопросы:
1. Объем потребления воды в 15 ч составил м 3 /ч.
2. Объем потребления воды днем (с 12 ч до 18 ч) составил ${\rm m}^3/{\rm q}$.
3. Объем потребления воды вечером (с 18 ч до 24 ч) в среднем составил
$M^3/4$.
4. Объем потребления воды утром (с 6 ч до 12 ч) в среднем составил \mathbf{m}^3/\mathbf{v} .
5. Объем потребления воды в течение дня (с 0 ч до 24 ч) в среднем со-
отавил $_{}$ м 3 /ч.
§ 50. Прямая пропорциональность и ее график
Обвести кружком номер правильного ответа:
1. График прямой пропорциональности через точку $A(1; 2)$ проходить: 1) может; 2) не может.
2. График прямой пропорциональности через точку $A(0; 2)$ проходить:
1) может; 2) не может.
3. График прямой пропорциональности через точку $A(1; 0)$ проходить:
1) может; 2) не может.
Дополнить:
4. Графики прямой пропорциональности $y = -2x$, $y = 17x$, $y = 0.2x$
пересекаются в точке с координатами
5. Если точка A (3; 15) принадлежит графику прямой пропорциональ-
ности, то ее коэффициент равен
§ 51. Линейное уравнение с двумя переменными
Дополнить:
1. Уравнение вида $ax + by + c = 0$, где a , b , c — числа, причем a и b одно-
временно не равны 0, называется
2. Пара чисел, при подстановке которых вместо x и y в уравнение
ax+by+c=0 получается верное числовое равенство, называется
3. Если все решения одного уравнения с двумя переменными равны ре-
шениям другого уравнения, то такие уравнения называются
4. Если в уравнении с двумя переменными слагаемые перенести из одной
части уравнения в другую, то получится уравнение, данному
уравнению.
5. Если обе части уравнения с двумя переменными умножить или раз-
делить на какое-либо число, не равное нулю, то получится уравнение,
данному уравнению.

§ 52. Системы линейных уравнений с двумя переменными

Дополнить:

- 1. Пара чисел, которая обращает каждое уравнение системы двух линейных уравнений с двумя переменными в верное числовое равенство ____ двух линейных одновременно, называется ___ уравнений с двумя переменными.
 - 2. Решить систему двух уравнений с двумя переменными значит
- 3. Если все решения одной системы двух уравнений с двумя переменными равны решениям другой системы уравнений, то они называются

- 4. Пара чисел (1; -1) решением системы уравнений $\begin{cases} 12x+13y=-1, \\ 14,8x-52,2y=67 \end{cases} :$
- 1) является; 2) не является.
- 5. Пара чисел (0; 1) решением системы уравнений $\begin{cases} 12x+13y=13,\\ 14,8x+52,2y=52,2 \end{cases}$:
- 1) является; 2) не является.

§ 53. Решение систем линейных уравнений с двумя переменными способом сложения

Установить правильную последовательность:

o classosite inputation jud incomposations.
1. Алгоритм решения систем линейных уравнений с двумя перемен-
ными:
□ Записывают решение системы.
□ Складывают левые и правые части получившихся уравнений.
🗆 Если коэффициенты при какой-либо переменной не являются про-
тивоположными числами, то обе части каждого уравнения умножают на
такие числа, чтобы коэффициенты при одной из переменных оказались
противоположными числами.
 Решают получившееся уравнение с одной переменной.
□ Найденное значение одной переменной подставляют в одно из урав-
нений системы и находят значение другой переменной.
Дополнить: 2. Решением системы уравнений $\begin{cases} 12x+y=14, \\ 3x-y=1 \end{cases}$ является
2. Решением системы уравнений (является
(3x-y=1)
3. Решением системы уравнений $\begin{cases} 12x+y=25,\\ 3x+8y=14 \end{cases}$ является 4. Решением системы уравнений $\begin{cases} 1,2x+y=1,4,\\ 3,6x+3y=-4,2 \end{cases}$ является
3. Решением системы уравнений $\begin{cases} 3r + 8u = 14 \end{cases}$ является
$(\partial x + \partial y - 1)$
A Репланием системы упавнений $1.2x+y=1.4$,
3.6x + 3y = -4.2
Обвести кружком номер правильного ответа:
5. Система уравнений $\begin{cases} 12x + 8y = 14, \\ 6x + 4y = 7 \end{cases}$ имеет решений:
6x+4y=7
1) 0) 7
1) одно; 2) ни одного; 3) бесконечно много.
8 54 Dayrayya ayamar myyayyyy yananyayyy
§ 54. Решение систем линейных уравнений с двумя переменными способом подстановки
с двумя переменными спосооом подстановки
Дополнить:
1. Если выразить переменную y через переменную x из уравнения
y - 2x = -5, то получим
2. Если выразить переменную x через переменную y из уравнения
2y - x = -5, то получим
(y-2x=-5,
3. Решением системы уравнений $\begin{cases} 3x - 8y = 14 \end{cases}$ является
2y-x=-5,
4. Решением системы уравнений $\begin{cases} 2y-x=-5, \\ 1,3x-0,1y=4 \end{cases}$ является
$\begin{cases} 11x+2y=21, \\ 5. \end{cases}$ Решением системы уравнений $\begin{cases} 11x+2y=21, \\ 2x+4y=17, \end{cases}$ является .
5. Решением системы уравнений $3x-4y=-17$ является ————————————————————————————————————